Planification et logique : une longue histoire

Andreas Herzig
University of Toulouse, IRIT-CNRS, France

JFPDA @ PFIA 2015, Rennes, 1 juillet 2015

What has planning to do with logic?

- where should I publish my paper on action and planning?
case
when (complex concepts \vee complex models) then submit (KR);
when (implemented \wedge fast) then submit(ICAPS)
esac
- two diverging communities
- logicians and most KR people focus on concepts and models
- planning community focus on efficient reasoning

What has planning to do with logic? (ctd.)

- since 2012: KR and ICAPS no longer colocated

	ICAPS		KR
2004	Canada		
2006	UK		
2008	Australia		
2010	Canada		
2012	Brazil		Italy
2014	USA		Austria
2016	$?$		South Africa

- since ~ 2012 :
- the planning community goes multiagent
- needs more complex concepts and models

The logic engineering perspective

logic = semantics + reasoning
(1) semantics

- which language?
- which concepts?
- which logical form? (arguments,...)
- has truth values? (facts do, actions don't)
- which models?
(2) reasoning
- non-mechanisable (Hilbert-style axiomatisations, natural deduction...)
\Rightarrow complete? decidable?
- mechanisable methods: sequent systems, resolution, Davis\&Putnam,..., semantic tableaux; model checking
\Rightarrow complete? decidable?
\Rightarrow worst/average case complexity? implementations?

The four central concepts in planning

1 initial state(s)

- made up of fluents
- simplest: state = each fluent either true or false = valuation of classical propositional logic
- alternatively: proba/fuzzy/epistemic/. . . logic

2 goal

- simplest: set of states (alternatively: proba/...)
- more challenging:
- temporal logics
- logics of goals and intentions (BDI logics)
\Rightarrow beliefs, goals, committed goals (intentions), plans, actions

The four central concepts in planning

3 action (alias planning operator)

- simplest model: action = \langle precond, add, del \rangle
- more challenging:
- conditional effects, sensing
- nondeterministic effects, probabilistic effects
- domain laws
\Rightarrow many KR problems: frame problem, ramification problem, qualification problem
4 plan
- simplest: sequence of actions
- more challenging:
- conditional plans (if-then-else), knowledge-based programs
- high-level intentions and plans + refinement (BDI model)
- strategies (coalition against its opponents)

Outline

(1) A short history of planning and logic

2 A simple logic of actions and plans

3 Planning tasks in DL-PA

4 Updating and revising by DL-PA programs
(5) Planning task modification in DL-PA

6 Conclusion

Theory vs. Practice: 1970-1990

- practice: first steps
- General Problem Solver
- classical planning: STRIPS [Fikes\&Nilsson 1971]
- theory: many tentatives
- logics plagued by the frame problem:
- Algorithmic Logic [Salwicki 1970]
- Dynamic Logic [Pratt 1976, Segerberg 1977]
- Linear Temporal Logic [Pnueli 1977, Gabbay 1980]
- complicated action formalisms:
- SitCalc [McCarthy 1963]
- EventCalc [Kowalski\&Sergot 1986]
- FluentCalc [Thielscher 1997]
- and an UFO: Linear Logic [Girard 1987]

Theory vs. Practice: 1990-2000

- theory: some paradigms emerge
- Reiter's SitCalc solution to the frame problem [Reiter 1991]
- successor state axioms model conditional effects
- requires 2nd-order logic!
- complicated belief-desire-intention (BDI) logics [Cohen\&Levesque 1990; Rao\&Georgeff 1990]
- desires \Rightarrow can be inconsistent
- intentions commit agent to act \Rightarrow must be consistent
- Cohen\&Levesque require 2nd-order logic!
- practice: successful planners
- based on boolean SAT solvers
- based on SMT solvers
- based on heuristic search
- ...

Theory vs. Practice: 2000-2010

- theory: mature formalisms
- game theory-inspired logics for strategic reasoning: Coalition Logic [Pauly 2000], Alternating-time Temporal Logic ATL [Alur et al. 1997], ATL*, Strategy Logic [Mogavero et al. 2010]
- "coalition of agents $\left\{i_{1}, \ldots, i_{n}\right\}$ has a strategy to achieve φ "
- Dynamic Epistemic Logics (DELs): Public Announcement Logic [Plaza 1989], Group Announcement Logic [Ågotnes et al. 2010],. . .
- "after the truthful public announcement that φ is true, ψ will hold"
- "coalition of agents $\left\{i_{1}, \ldots, i_{n}\right\}$ can achieve common knowledge of $\varphi^{\prime \prime}$
- SAT problem often in PSpace
- Separation Logic [Reynolds, O'Hearn et al. 2002]
- resource logic (successors of linear logic)
- 'built-in' solution to the frame problem
- practice: consolidation
- PDDL [McDermott 1998/2000]; benchmarks \& competitions
- implemented BDI agents
- plan libraries only
\Rightarrow remained single-agent \& diverged from logic

Theory vs. Practice: 2010-2020

- theory and practice converge
- Dagstuhl workshops on multiagent planning in 2008, 2014
- 'ICAPS goes multiagent'
- ICAPS 2005 and 2008 Multiagent Planning Workshop
- since ICAPS 2013: workshop series 'Distributed and Multi-Agent Planning' (DMAP)
[Petrick, Geffner, Domshlak, Brafman, Kambhampati, Nebel,...]
- 'DEL goes planning'
[Bolander, van der Hoek, Wooldridge, Aucher, Schwarzentruber,...]
- difficult: plan existence undecidable in general
[Aucher\&Bolander 2013], in ExpSpace in some cases
[Bolander et al. 2015]
- simpler BDI logics get simpler
[Shoham 2009, Icard et al. 2010, van Zee et al. 2015]
- 'database perspective'

This talk

- propaganda for a simple logic of actions and plans allowing for planning with conditional and nondeterministic effects
- similar to but more natural than QBF
- based on propositional assignments
- decidable
- SAT/validity/model checking problem: all PSpace complete \Rightarrow in the logic! (cf. Hilbert's program)
- account of visibility-based epistemic reasoning
\Rightarrow v. Faustine's talk
- account of planning problem modification
[Smith, ICAPS 2004; Göbelbecker et al., ICAPS 2010, Herzig et al., ECAI 2014]
\Rightarrow v.i.

Outline

A A short history of planning and logic

(2) A simple logic of actions and plans
(3) Planning tasks in DL-PA

4 Updating and revising by DL-PA programs
(5) Planning task modification in DL-PA

C Conclusion

Extending the language of QBF

- boolean formulas: talk about a single valuation (alias a state)

$$
\begin{array}{lll}
s \models p & \text { if } & p \in s \\
s \models \neg \varphi & \text { if } & s \nLeftarrow \varphi
\end{array}
$$

- quantified boolean formulas (QBF): talk about valuations and their modification

$$
\begin{array}{llll}
s \models \exists p . \varphi & \text { if } & s \cup\{p\} \models \varphi \text { or } & s \backslash\{p\} \models \varphi \\
s \models \forall p . \varphi & \text { if } & s \cup\{p\} \models \varphi \text { and } & s \backslash\{p\} \models \varphi
\end{array}
$$

- beyond: talk about programs modifying valuations
\Rightarrow assignments of propositional variables to truth values

$$
\begin{array}{lll}
s \models\langle p \leftarrow T\rangle \varphi & \text { if } & s \cup\{p\} \models \varphi \\
s \models\langle p \leftarrow \perp\rangle \varphi & \text { if } & s \backslash\{p\} \models \varphi
\end{array}
$$

Assignments and QBF are equi-expressive

- express assignments in QBF:

$$
\begin{aligned}
& \langle p \leftarrow T\rangle \varphi=\exists p .(p \wedge \varphi) \\
& \langle p \leftarrow \perp\rangle \varphi=\exists p .(\neg p \wedge \varphi)
\end{aligned}
$$

- express propositional quantifiers in DL-PA:

$$
\begin{aligned}
& \exists p . \varphi=\langle p \leftarrow T\rangle \varphi \vee\langle p \leftarrow \perp\rangle \varphi \\
& \forall p . \varphi=\langle p \leftarrow T\rangle \varphi \wedge\langle p \leftarrow \perp\rangle \varphi
\end{aligned}
$$

- ...but DL-PA also has complex assignment programs

Assignment programs as relations on valuations

- atomic assignment programs

$$
\begin{aligned}
& s \xrightarrow{p \leftarrow T} s \cup\{p\} \\
& s \xrightarrow{p \leftarrow \perp} s \backslash\{p\}
\end{aligned}
$$

- sequential composition
$s_{1} \xrightarrow{\pi_{1} ; \pi_{2}} s_{3}$ iff there is s_{2} such that $s_{1} \xrightarrow{\pi_{1}} s_{2} \xrightarrow{\pi_{2}} s_{3}$
- nondeterministic composition

$$
s \xrightarrow{\pi_{1} \cup \pi_{2}} s^{\prime} \text { iff } s \xrightarrow{\pi_{1}} s^{\prime} \text { or } s \xrightarrow{\pi_{2}} s^{\prime}
$$

- finite iteration ('Kleene star')

$$
s \xrightarrow{\pi^{*}} s^{\prime} \text { iff there is } n \text { such that } s \xrightarrow{\pi^{n}} s^{\prime}
$$

- test

$$
s \xrightarrow{\varphi ?} s^{\prime} \text { iff } s=s^{\prime} \text { and } s \models \varphi
$$

- converse, intersection,...

Capturing standard programming languages

$$
\text { if } \begin{aligned}
\varphi \text { then } \pi_{1} \text { else } \pi_{2} & =\left(\varphi ? ; \pi_{1}\right) \cup\left(\neg \varphi ? ; \pi_{2}\right) \\
\text { while } \varphi \text { do } \pi & =(\varphi ? ; \pi)^{*} ; \neg \varphi ? \\
\text { skip } & =\mathrm{T} ? \\
\text { fail } & =\perp ?
\end{aligned}
$$

Language of DL-PA

- existential and universal modal operators:

$$
\begin{aligned}
\langle\pi\rangle \varphi & =" \varphi \text { is true after some execution of } \pi " \\
{[\pi] \varphi } & =" \varphi \text { is true after every execution of } \pi " \\
& =\neg\langle\pi\rangle \neg \varphi
\end{aligned}
$$

- therefore more compactly:

$$
\begin{aligned}
& \exists p . \varphi=\langle p \leftarrow T \cup p \leftarrow \perp\rangle \varphi \\
& \forall p . \varphi=[p \leftarrow T \cup p \leftarrow \perp] \varphi
\end{aligned}
$$

- language of DL-PA: programs π and formulas φ

$$
\begin{aligned}
\varphi: & :=p|T| \perp|\neg \varphi| \varphi \vee \varphi|\langle\pi\rangle \varphi|[\pi] \varphi \\
\pi: & := \\
& p \leftarrow T|p \leftarrow \perp| \varphi ?|\pi ; \pi| \pi \cup \pi\left|\pi^{*}\right| \pi^{-1} \\
& \quad \text { where } p \text { ranges over set of propositional variables } \mathbb{P}
\end{aligned}
$$

Semantics of DL-PA: (1) formulas

- interpretation of a formula $\varphi=$ set of valuations $\|\varphi\| \subseteq 2^{\mathbb{P}}$

$$
\begin{aligned}
\|p\| & =\{s: p \in s\} \\
\|T\| & =2^{\mathbb{P}} \\
\|\perp\| & =\emptyset \\
\|\neg \varphi\| & =\ldots \\
\|\varphi \vee \psi\| & =\ldots \\
\|\langle\pi\rangle \varphi\| & =\left\{s: \text { there is } s^{\prime} \text { such that } s \xrightarrow{\pi} s^{\prime} \& s^{\prime} \in\|\varphi\|\right\} \\
\|[\pi] \varphi\| & =\left\{s: \text { for every } s^{\prime}: s \xrightarrow{\pi} s^{\prime} \Longrightarrow s^{\prime} \in\|\varphi\|\right\}
\end{aligned}
$$

Semantics of DL-PA: (1) formulas

- interpretation of a formula $\varphi=$ set of valuations $\|\varphi\| \subseteq 2^{\mathbb{P}}$

$$
\begin{aligned}
\|p\| & =\{s: p \in s\} \\
\|T\| & =2^{\mathbb{P}} \\
\|\perp\| & =\emptyset \\
\|\neg \varphi\| & =\ldots \\
\|\varphi \vee \psi\| & =\ldots \\
\|\langle\pi\rangle \varphi\| & =\left\{s: \text { there is } s^{\prime} \text { such that } s \xrightarrow{\pi} s^{\prime} \& s^{\prime} \in\|\varphi\|\right\} \\
\|[\pi] \varphi\| & =\left\{s: \text { for every } s^{\prime}: s \xrightarrow{\pi} s^{\prime} \Longrightarrow s^{\prime} \in\|\varphi\|\right\}
\end{aligned}
$$

- write $\left(s, s^{\prime}\right) \in\|\pi\|$ instead of $s \xrightarrow{\pi} s^{\prime}$

Semantics of DL-PA: (2) programs

- interpretation of a program $\pi=$ relation on the set of valuations $2^{\mathbb{P}}$

$$
\begin{aligned}
\|p \leftarrow T\| & =\left\{\left(s, s^{\prime}\right): s^{\prime}=s \cup\{p\}\right\} \\
\|p \leftarrow \perp\| & =\left\{\left(s, s^{\prime}\right): s^{\prime}=s \backslash\{p\}\right\} \\
\|\varphi ?\| & =\{(s, s): s \in\|\varphi\|\} \\
\left\|\pi ; \pi^{\prime}\right\| & =\|\pi\| \circ\left\|\pi^{\prime}\right\| \\
\left\|\pi \cup \pi^{\prime}\right\| & =\|\pi\| \cup\left\|\pi^{\prime}\right\| \\
\left\|\pi^{*}\right\| & =(\|\pi\|)^{*}=\bigcup_{k \in \mathbb{N}_{0}}(\|\pi\|)^{k} \\
\left\|\pi^{-1}\right\| & =(\|\pi\|)^{-1}
\end{aligned}
$$

DL-PA: eliminating the dynamic operators

- eliminate the program operators
(1) eliminate the Kleene star:

$$
\left\langle\pi^{*}\right\rangle \varphi \leftrightarrow\left\langle\pi^{\left.2^{\leq \operatorname{card}\left(\mathbb{P}_{\pi}\right)}\right\rangle \varphi}\right.
$$

(2) eliminate converse operators:

$$
\left.\begin{array}{rl}
\left(\pi_{1} ; \pi_{2}\right)^{-1} \equiv \pi_{2}^{-1} ; \pi_{1}^{-1} & \\
\ldots & p \leftarrow T^{-1} \equiv p ? ;(\text { skip } \cup p \leftarrow \perp) \\
\ldots &
\end{array}\right) \perp^{-1} \equiv \ldots .
$$

(3) eliminate all other program operators:

$$
\left\langle\pi_{1} \cup \pi_{2}\right\rangle \varphi \leftrightarrow\left\langle\pi_{1}\right\rangle \vee\left\langle\pi_{2}\right\rangle \varphi \quad\langle\psi ?\rangle \varphi \leftrightarrow \psi \wedge \varphi
$$

(2) eliminate atomic programs $\langle p \leftarrow T\rangle$ and $\langle p \leftarrow \perp\rangle$:

- distribute over \wedge, \vee, \neg
- can be eliminated when facing atomic formulas:

$$
\langle p \leftarrow T\rangle q \leftrightarrow\left\{\begin{array} { l l }
{ T } & { \text { if } q = p } \\
{ q } & { \text { otherwise } }
\end{array} \quad \langle p \leftarrow \perp \rangle q \leftrightarrow \left\{\begin{array}{ll}
\perp & \text { if } q=p \\
q & \text { otherwise }
\end{array}\right.\right.
$$

Proposition ('regression')

For every DL-PA formula there is an equivalent boolean formula (that miaht be exnonentiallv Ioncer)

DL-PA: eliminating the dynamic operators

Example

$$
\begin{aligned}
\left\langle p \leftarrow \perp^{-1}\right\rangle(p \wedge q) & \leftrightarrow\langle\neg p ? ;(\text { skip } \cup p \leftarrow T)\rangle(p \wedge q) \\
& \leftrightarrow\langle\neg p ?\rangle\langle(\text { skip } \cup p \leftarrow T)\rangle(p \wedge q) \\
& \leftrightarrow \neg p \wedge\langle(\text { skip } \cup p \leftarrow T)\rangle(p \wedge q) \\
& \leftrightarrow \neg p \wedge(\langle\text { skip }\rangle(p \wedge q) \vee\langle p \leftarrow T)\rangle(p \wedge q)) \\
& \leftrightarrow \neg p \wedge(\langle\text { skip }\rangle(p \wedge q) \vee(\langle p \leftarrow T)\rangle p \wedge\langle p \leftarrow T)\rangle q)) \\
& \leftrightarrow \neg p \wedge((p \wedge q) \vee(T \wedge q)) \\
& \leftrightarrow \neg p \wedge((p \wedge q) \vee q) \\
& \leftrightarrow \neg p \wedge q
\end{aligned}
$$

Properties of DL-PA

- compares favourably to PDL:
- PSPACE complete both for model checking and satisfiability checking [Balbiani et al., ongoing]
- in [Balbiani et al., LICS 2013] PDL: SAT is EXPTIME complete
- consequence relation is compact and has interpolation
- fails for PDL
- rest of talk:
- how to capture planning and plan task modifications

Outline

(1) A short history of planning and logic

C. A simple logic of actions and plans
(3) Planning tasks in DL-PA

4 Updating and revising by DL-PA programs
(5) Planning task modification in DL-PA

- Conclusion

Classical planning

- classical planning task:

$\langle\mathbb{P}$,	finite set of propositional variables
S_{0},	initial state
S_{g},	set of goal states
A〉	finite set of STRIPS actions

- interpretation of an action $a \in A=$ relation on the set of states

$$
\|a\|=\left\{\left(s, s^{\prime}\right): s \in\left\|\operatorname{pre}_{a}\right\| \text { and } s^{\prime}=\left(s \backslash \operatorname{del}_{a}\right) \cup \operatorname{add}_{a}\right\}
$$

(deterministic: each ||a\|| is a function)

- s is reachable from s_{0} via A iff ...
- planning task is solvable iff some state in S_{g} is reachable from s_{0} via A

Classical planning tasks in DL-PA

- action a with add list $\left\{p_{1}, \ldots, p_{m}\right\}$ and delete list $\left\{q_{1}, \ldots, q_{n}\right\}$:

$$
\|a\|=\| \text { pre }_{a} ? ; p_{1} \leftarrow T ; \cdots ; p_{m} \leftarrow T ; q_{1} \leftarrow \perp ; \cdots ; q_{n} \leftarrow \perp \|
$$

\Rightarrow view every a_{i} in $A=\left\{a_{1}, \ldots, a_{n}\right\}$ as a DL-PA program

- define DL-PA program iterate ${ }_{A}=\left(a_{1} \cup \cdots \cup a_{n}\right)^{*}$
$\left(\mathbb{P}, \mathrm{A}, \mathrm{s}_{0}, \mathrm{~S}_{g}\right)$ solvable iff $\mathrm{Fml}\left(\mathrm{s}_{0}\right) \rightarrow\left\langle\right.$ iterate $\left._{\mathrm{A}}\right\rangle \mathrm{Fml}\left(\mathrm{S}_{g}\right)$ DL-PA valid

Beyond classical planning

- nondeterministic effects:
if pre_{a} then $\pi_{1} \cup \pi_{2}$
- conditional effects:
if pre $_{a} \wedge C_{1}$
then π_{1} else if pre ${ }_{a} \wedge C_{2}$ then π_{2}
(precise definition requires copies of variables)

Outline

A A short history of planning and logic

- A simple logic of actions and plans
(3) Planning tasks in DL-PA

44 Updating and revising by DL-PA programs
5 Planning task modification in DL-PA
(6) Conclusion

Belief change operations

$B \circ A=$ modification of belief base B accomodating input A

- many operations o in the literature; most prominent:
- Winslett's possible models approach PMA [Winslett, AAAI 1988]
- Winslett's standard semantics WSS [Winslett 1995]
- Forbus's update operation [Forbus, IJCAI 1989]
- Dalal's revision operation [Dalal, AAAI 1988]
- concrete operations: different from parametrised operations à la AGM, KM (built from background ordering or distance)
- semantical
(1) state $=$ subset of \mathbb{P}
(2) interpretation of formula $=$ set of states
(3) result of update/revision $=$ set of states

$$
B \circ A \text { subset of } 2^{\mathbb{P}}
$$

Forbus's update operation [Forbus, IJCAI 1989]

- Hamming distance between states

$$
h(\{p, q\},\{q, r\})=\operatorname{card}(\{p, r\})=2
$$

- update B by $A=$ "for each B-state, find the closest A-states w.r.t. h(.,.); then collect the resulting states"
(1) $s \Delta^{\text {torbus }} A=\left\{s^{\prime}: s^{\prime} \in\|A\|\right.$ and there is no $s^{\prime \prime}$ s.th. $\left.h\left(s, s^{\prime \prime}\right)<\mathrm{h}\left(s, s^{\prime}\right)\right\}$
(2) $S \Delta^{\text {torbus }} A=\cup_{s \in S} S \Delta^{\text {forbus }} A$

Example

$\neg p \wedge \neg q \diamond$ forbus $p \vee q=\|p \oplus q\|$
(exclusive \vee)
$p \oplus q \diamond{ }^{\text {forbus }} p=\|p\|$

Dalal's revision operation [Dala, AAAl 1988]

- revise B by $A=$ "go to the A-states that are closest w.r.t. Hamming distance to the B-states"
$B *{ }^{\text {dalal }} A=\left\{s_{A} \in\|A\|\right.$: there is $s_{B} \in\|B\|$ s.t. there are no $s_{A}^{\prime}, s_{B}^{\prime}$ with $\left.\mathrm{h}\left(s_{A}^{\prime}, s_{B}^{\prime}\right)<\mathrm{h}\left(s_{A}, s_{B}\right)\right\}$
- update vs. revision:
- $B * *^{\text {dalal }} A=B \diamond^{\text {forbus }} A$ if B is complete
- $B *^{\text {dala }} A=\|B \wedge A\| \quad$ if $\|B \wedge A\| \neq \emptyset$

Example

$\neg p \wedge \neg q *^{\text {dalal }} p \vee q=\|p \oplus q\|$
$p \oplus q *^{\text {dalal }} p=\|p \wedge \neg q\|$

The embeddings in a nutshell

- here: polynomial embeddings into DL-PA
- object language operators (vs. metalanguage operations)
- regression \Rightarrow representation of $B \circ A$ in propositional logic
- update by atomic formula is 'built in':
- $p \leftarrow T=$ "update by $p!"$
$p \leftarrow \perp=$ "update by $\neg p!"$
- update by complex formula $A=$ complex assignment π_{A}
- depends on belief change operation:

$$
\begin{aligned}
& \pi_{\neg p \vee \neg q}^{\mathrm{wss}}=p \leftarrow \perp \cup q \leftarrow \perp \cup(p \leftarrow \perp ; q \leftarrow \perp) \\
& \pi_{\neg p \vee \neg q}^{\mathrm{pma}}=\ldots
\end{aligned}
$$

- to be proved for each change operation $\circ^{o p}$:

$$
B \circ^{o p} A=\left\|\left\langle\left(\pi_{A}^{o p}\right)^{-1}\right\rangle B\right\|
$$

- details in the next slides

Some useful programs and formulas

- nondeterministically assign truth values to p_{1}, \ldots, p_{n} :

$$
\operatorname{vary}\left(\left\{p_{1}, \ldots, p_{n}\right\}\right)=\left(p_{1} \leftarrow \mathrm{~T} \cup p_{1} \leftarrow \perp\right) ; \cdots ;\left(p_{n} \leftarrow \top \cup p_{n} \leftarrow \perp\right)
$$

- nondeterministically flip one of p_{1}, \ldots, p_{n} :

$$
\text { flip1 }\left(\left\{p_{1}, \ldots, p_{n}\right\}\right)=p_{1} \leftarrow \neg p_{1} \cup \cdots \cup p_{n} \leftarrow \neg p_{n}
$$

- Hamming distance to closest A-state at least m :

$$
H(A, \geq m)= \begin{cases}\top & \text { if } m=0 \\ \neg\left\langle f l i p 1^{\leq m-1}\left(\mathbb{P}_{A}\right)\right\rangle A & \text { if } m \geq 1\end{cases}
$$

Expressing Forbus's operation in DL-PA

Theorem ([H, KR 2014])

Let $\pi^{\text {forbus }}(A)$ be the DL-PA program

$$
\left(\bigcup_{0 \leq m \leq \operatorname{card}\left(\mathbb{P}_{A}\right)} \mathrm{H}(A, \geq m) ? ; f \operatorname{lip} 1^{m}\left(\mathbb{P}_{A}\right)\right) ; A ?
$$

Then $B \diamond^{\text {forbus }} A=\left\|\left\langle\left(\pi^{\text {forbus }}(A)\right)^{-1}\right\rangle B\right\|$.

- program length cubic in length of A

Expressing Dalal's operation in DL-PA

Theorem (H, KR 2014)

Let $\pi^{\text {dalal }}(A, B)$ be the DL-PA program

$$
\begin{aligned}
& \operatorname{vary}\left(\mathbb{P}_{B}\right) ; B ? ; \\
& \left(\bigcup_{0 \leq m \leq \operatorname{card}\left(\mathbb{P}_{A}\right)}\left(\left[\operatorname{vary}\left(\mathbb{P}_{B}\right) ; B ?\right] \mathrm{H}(A, \geq m)\right) ? ; f 1 \operatorname{lip} 1^{m}\left(\mathbb{P}_{A}\right)\right) ; A ?
\end{aligned}
$$

Then for satisfiable $B: B *^{\text {dalal }} A=\left\|\left\langle\left(\pi^{\text {dalal }}(A, B)\right)^{-1}\right\rangle T\right\|$.

- program length cubic in length of $A+$ length of B

Outline

A A short history of planning and logic

C) A simple logic of actions and plans
(3) Planning tasks in DL-PA
4) Updating and revising by DL-PA programs
(5) Planning task modification in DL-PA

C Conclusion

Planning task modification

- suppose $\left(\mathbb{P}, \mathrm{A}, \mathrm{s}_{0}, \mathrm{~S}_{g}\right)$ has no solution

- modify task [Smith, ICAPS 2004; Göbelbecker et al., ICAPS 2010]:
- increase or decrease the set of objects of the domain
(2) augment the set of actions A
(3) change the initial state s_{0}
(4) change the goal description S_{g}
- here: 2, 3 and 4

Planning task modification

- suppose $\left(\mathbb{P}, \mathrm{A}, \mathrm{s}_{0}, \mathrm{~S}_{g}\right)$ has no solution

- modify task [Smith, ICAPS 2004; Göbelbecker et al., ICAPS 2010]:
(increase or decrease the set of objects of the domain
(2) augment the set of actions A
(3) change the initial state s_{0}
('find good excuses')
(4) change the goal description S_{g}
- here: 2, 3 and 4

Changing the initial state

- candidate initial states:
$S_{0}^{\prime}=\left\{s_{0}^{\prime}:\right.$ there is a goal state that is reachable from s_{0}^{\prime} via A $\}$
- candidate initial states closest to s_{0} :

$$
\mathrm{s}_{0} \diamond^{\text {forbus }} \mathrm{Fml}\left(\mathrm{~S}_{0}^{\prime}\right)
$$

- alternative: $\mathrm{s}_{0} \diamond^{\mathrm{pma}} \mathrm{Fml}\left(\mathrm{S}_{0}^{\prime}\right)$ [Göbelbecker et al., ICAPS 2010]
- for both:
- "update s_{0} such that S_{g} becomes reachable"
- problem: counterfactual statement \Rightarrow non-boolean

Changing the goal

- candidate goal states:

$$
\mathrm{S}_{g}^{\prime}=\left\{\mathrm{s}_{g}^{\prime}: \mathrm{s}_{g}^{\prime} \text { is reachable from initial state via A }\right\}
$$

- candidate goal states closest to S_{g} :

$$
\mathrm{S}_{g} *{ }^{\text {dalal }} \mathrm{Fml}\left(\mathrm{~S}_{g}^{\prime}\right)
$$

- "revise S_{g} such that goal becomes reachable from s_{0} "
N.B.: update would be too permissive
- problem: counterfactual statement \Rightarrow non-boolean

Augmenting the set of actions

- given: planning task ($\mathbb{P}, \mathrm{A}, \mathrm{s}_{0}, \mathrm{~S}_{g}$)
- set of background actions A_{0}
- only A is initially usable

$$
\mathrm{s}_{0} \models\left(\bigwedge_{\mathrm{a} \in \mathrm{~A}} \mathrm{u}_{\mathrm{a}}\right) \wedge\left(\bigwedge_{\mathrm{a} \in \mathrm{~A}_{0} \backslash \mathrm{~A}} \neg \mathrm{u}_{\mathrm{a}}\right)
$$

- add u_{a} to the precondition of all actions
- change the u_{a} minimally such that S_{g} gets reachable

Changing the initial state in DL-PA

- set of candidate initial states:

$$
\mathrm{S}_{0}^{\prime}=\|\left\langle\text { iterate }_{\mathrm{A}}\right\rangle \mathrm{Fml}\left(\mathrm{~S}_{g}\right) \|
$$

Theorem

The set of initial states closest to s_{0} from which S_{g} is reachable is

$$
\begin{aligned}
\mathrm{s}_{0} \diamond^{\text {forbus }} \operatorname{Fml}\left(\mathrm{S}_{0}^{\prime}\right) & =\left\|\left\langle\left(\pi^{\text {forbus }}\left(\operatorname{Fml}\left(\mathrm{S}_{0}^{\prime}\right)\right)\right)^{-1}\right\rangle \mathrm{Fml}\left(\mathrm{~s}_{0}\right)\right\| \\
& =\|\left\langle\left(\pi^{\text {forbus }}\left(\left\langle\text { iterate }{ }_{A}\right\rangle \mathrm{Fml}\left(\mathrm{~S}_{g}\right)\right)\right)^{-1}\right\rangle \operatorname{Fml}\left(\mathrm{s}_{0}\right) \|
\end{aligned}
$$

Changing the goal in DL-PA

- set of candidate goal states:

$$
\mathrm{S}_{g}^{\prime}=\|\left\langle\text { iterate }_{\mathrm{A}}^{-1}\right\rangle \mathrm{Fml}\left(\mathrm{~s}_{0}\right) \|
$$

Theorem

The set of goal states closest to S_{g} that are reachable from s_{0} is

$$
\begin{aligned}
\mathrm{S}_{g} *^{\text {dalal }} \mathrm{Fml}\left(\mathrm{~S}_{g}^{\prime}\right) & =\left\|\left\langle\left(\pi^{\text {dalal }}\left(\operatorname{Fml}\left(\mathrm{S}_{g}^{\prime}\right), \operatorname{Fml}\left(\mathrm{S}_{g}\right)\right)\right)^{-1}\right\rangle \top\right\| \\
& =\|\left\langle\left(\pi^{\text {dalal }}\left(\left\langle\text { iterate }_{\mathrm{A}}^{-1}\right\rangle \operatorname{Fml}\left(\mathrm{s}_{0}\right), \operatorname{Fml}\left(\mathrm{S}_{g}\right)\right)\right)^{-1}\right\rangle \top \|
\end{aligned}
$$

Outline

(1) A short history of planning and logic

2 A simple logic of actions and plans

3 Planning tasks in DL-PA

4 Updating and revising by DL-PA programs
(5) Planning task modification in DL-PA

6 Conclusion

Conclusion

Dynamic Logic of Propositional Assignments DL-PA [H. et al., IJCAI 2011, Balbiani, H.\&Troquard, LICS 2013]

- a sort of Hilbert program for knowledge representation: capture metalinguistic definitions in a logical language
- update and revision operations [H., KR 2014]
- merging operations [H. et al., FOIKS 2014]
- abstract argumentation frameworks and their modification
[Doutre, H.\&Perrussel, KR 2014]
- planning tasks and their modification [H. et al., ECAI 2014]
- active integrity constraints [H.\&Feuillade, JELIA 2014]
- Dung argumentation frameworks
- enforce a property on all/some extensions = update by a counterfactual
- planning and planning task modification
- builds on embedding of update/revision operations into DL-PA
- modification of initial state = update by a counterfactual
- modification of goal = revision by a counterfactual

Conclusion, ctd.

- ongoing: epistemic extension
- action preconditions become epistemic actions
- public/semi-public/private/... \Rightarrow DEL s
- undecidable in general (due to *) [Miller\&Moss, 2004]
- single agent decidable [Bolander et al. 2012]
- star-free fragment enough to embed Scherl\&Levesque's epistemic extension of the SitCalc
[van Ditmarsch, H.\&de Lima, JLC 2012]
- other decidable fragments?
- grounded versions: cf. Faustine's talk at IAF'2015
- t.b.d.: strategic version
- based on propositional control (cf. boolean games)

