
Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Planification et logique : une longue histoire

Andreas Herzig
University of Toulouse, IRIT-CNRS, France

JFPDA @ PFIA 2015, Rennes, 1 juillet 2015

1 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

What has planning to do with logic?

where should I publish my paper on action and planning?
case

when (complex concepts∨complex models) then submit(KR);
when (implemented∧fast) then submit(ICAPS)

esac

two diverging communities
logicians and most KR people focus on concepts and models
planning community focus on efficient reasoning

2 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

What has planning to do with logic? (ctd.)

since 2012: KR and ICAPS no longer colocated

ICAPS KR
2004 Canada
2006 UK
2008 Australia
2010 Canada
2012 Brazil Italy
2014 USA Austria
2016 ? South Africa

since ∼2012:
the planning community goes multiagent
needs more complex concepts and models

3 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

The logic engineering perspective

logic = semantics + reasoning

1 semantics
which language?

which concepts?
which logical form? (arguments,. . .)
has truth values? (facts do, actions don’t)

which models?
2 reasoning

non-mechanisable (Hilbert-style axiomatisations, natural
deduction . . .)
⇒ complete? decidable?

mechanisable methods: sequent systems, resolution,
Davis&Putnam,. . . , semantic tableaux; model checking
⇒ complete? decidable?
⇒ worst/average case complexity? implementations?

4 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

The four central concepts in planning

1 initial state(s)
made up of fluents
simplest: state = each fluent either true or false

= valuation of classical propositional logic
alternatively: proba/fuzzy/epistemic/. . . logic

2 goal
simplest: set of states (alternatively: proba/. . .)
more challenging:

temporal logics
logics of goals and intentions (BDI logics)
⇒ beliefs, goals, committed goals (intentions), plans, actions

5 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

The four central concepts in planning

3 action (alias planning operator)
simplest model: action = 〈precond, add, del〉
more challenging:

conditional effects, sensing
nondeterministic effects, probabilistic effects
domain laws

⇒ many KR problems: frame problem, ramification problem,
qualification problem

4 plan
simplest: sequence of actions
more challenging:

conditional plans (if-then-else), knowledge-based programs
high-level intentions and plans + refinement (BDI model)
strategies (coalition against its opponents)

6 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Outline

1 A short history of planning and logic

2 A simple logic of actions and plans

3 Planning tasks in DL-PA

4 Updating and revising by DL-PA programs

5 Planning task modification in DL-PA

6 Conclusion

7 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Theory vs. Practice: 1970-1990

practice: first steps
General Problem Solver
classical planning: STRIPS [Fikes&Nilsson 1971]

theory: many tentatives
logics plagued by the frame problem:

Algorithmic Logic [Salwicki 1970]
Dynamic Logic [Pratt 1976, Segerberg 1977]
Linear Temporal Logic [Pnueli 1977, Gabbay 1980]

complicated action formalisms:
SitCalc [McCarthy 1963]
EventCalc [Kowalski&Sergot 1986]
FluentCalc [Thielscher 1997]

and an UFO: Linear Logic [Girard 1987]

8 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Theory vs. Practice: 1990-2000

theory: some paradigms emerge
Reiter’s SitCalc solution to the frame problem [Reiter 1991]

successor state axioms model conditional effects
requires 2nd-order logic!

complicated belief-desire-intention (BDI) logics
[Cohen&Levesque 1990; Rao&Georgeff 1990]

desires⇒ can be inconsistent
intentions commit agent to act⇒ must be consistent
Cohen&Levesque require 2nd-order logic!

practice: successful planners
based on boolean SAT solvers
based on SMT solvers
based on heuristic search
. . .

9 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Theory vs. Practice: 2000-2010
theory: mature formalisms

game theory-inspired logics for strategic reasoning: Coalition
Logic [Pauly 2000], Alternating-time Temporal Logic ATL
[Alur et al. 1997], ATL∗, Strategy Logic [Mogavero et al. 2010]

“coalition of agents {i1, . . . , in} has a strategy to achieve ϕ”
Dynamic Epistemic Logics (DELs): Public Announcement
Logic [Plaza 1989], Group Announcement Logic
[Ågotnes et al. 2010],. . .

“after the truthful public announcement that ϕ is true, ψ will hold”
“coalition of agents {i1, . . . , in} can achieve common knowledge
of ϕ”
SAT problem often in PSpace

Separation Logic [Reynolds, O’Hearn et al. 2002]
resource logic (successors of linear logic)
‘built-in’ solution to the frame problem

practice: consolidation
PDDL [McDermott 1998/2000]; benchmarks & competitions
implemented BDI agents

plan libraries only

⇒ remained single-agent & diverged from logic
10 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Theory vs. Practice: 2010-2020

theory and practice converge
Dagstuhl workshops on multiagent planning in 2008, 2014
‘ICAPS goes multiagent’

ICAPS 2005 and 2008 Multiagent Planning Workshop
since ICAPS 2013: workshop series ‘Distributed and
Multi-Agent Planning’ (DMAP)
[Petrick, Geffner, Domshlak, Brafman, Kambhampati, Nebel,. . .]

‘DEL goes planning’
[Bolander, van der Hoek, Wooldridge, Aucher, Schwarzentruber,. . .]

difficult: plan existence undecidable in general
[Aucher&Bolander 2013], in ExpSpace in some cases
[Bolander et al. 2015]

simpler BDI logics get simpler
[Shoham 2009, Icard et al. 2010, van Zee et al. 2015]

‘database perspective’

11 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

This talk

propaganda for a simple logic of actions and plans allowing
for planning with conditional and nondeterministic effects

similar to but more natural than QBF
based on propositional assignments
decidable
SAT/validity/model checking problem: all PSpace complete

⇒ in the logic! (cf. Hilbert’s program)
account of visibility-based epistemic reasoning
⇒ v. Faustine’s talk

account of planning problem modification
[Smith, ICAPS 2004; Göbelbecker et al., ICAPS 2010, Herzig et al., ECAI 2014]

⇒ v.i.

12 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Outline

1 A short history of planning and logic

2 A simple logic of actions and plans

3 Planning tasks in DL-PA

4 Updating and revising by DL-PA programs

5 Planning task modification in DL-PA

6 Conclusion

13 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Extending the language of QBF

boolean formulas: talk about a single valuation (alias a state)
s |= p if p ∈ s
s |= ¬ϕ if s 6|= ϕ

. . .
quantified boolean formulas (QBF): talk about valuations and
their modification

s |= ∃p.ϕ if s∪{p} |= ϕ or s\{p} |= ϕ

s |= ∀p.ϕ if s∪{p} |= ϕ and s\{p} |= ϕ

beyond: talk about programs modifying valuations
⇒ assignments of propositional variables to truth values

s |= 〈p←>〉ϕ if s∪{p} |= ϕ

s |= 〈p←⊥〉ϕ if s\{p} |= ϕ

14 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Assignments and QBF are equi-expressive

express assignments in QBF:
〈p←>〉ϕ = ∃p.(p ∧ ϕ)
〈p←⊥〉ϕ = ∃p.(¬p ∧ ϕ)

express propositional quantifiers in DL-PA:
∃p.ϕ = 〈p←>〉ϕ ∨ 〈p←⊥〉ϕ
∀p.ϕ = 〈p←>〉ϕ ∧ 〈p←⊥〉ϕ

. . . but DL-PA also has complex assignment programs

15 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Assignment programs as relations on valuations
atomic assignment programs

s
p←>
−→ s∪{p}

s
p←⊥
−→ s\{p}

sequential composition

s1
π1;π2
−→ s3 iff there is s2 such that s1

π1
−→ s2

π2
−→ s3

nondeterministic composition

s
π1∪π2
−→ s′ iff s

π1
−→ s′ or s

π2
−→ s′

finite iteration (‘Kleene star’)

s
π∗

−→ s′ iff there is n such that s
πn

−→ s′

test

s
ϕ?
−→ s′ iff s = s′ and s |= ϕ

converse, intersection,. . . 16 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Capturing standard programming languages

if ϕ then π1 else π2 = (ϕ?; π1) ∪ (¬ϕ?; π2)

while ϕ do π = (ϕ?; π)∗;¬ϕ?

skip = >?

fail = ⊥?

17 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Language of DL-PA

existential and universal modal operators:
〈π〉ϕ = “ϕ is true after some execution of π”
[π]ϕ = “ϕ is true after every execution of π”

= ¬〈π〉¬ϕ

therefore more compactly:

∃p.ϕ = 〈p←>∪ p←⊥〉ϕ

∀p.ϕ = [p←>∪ p←⊥]ϕ

language of DL-PA: programs π and formulas ϕ
ϕ F p | > | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ | [π]ϕ
π F p←> | p←⊥ | ϕ? | π; π | π ∪ π | π∗ | π−1

where p ranges over set of propositional variables P

18 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Semantics of DL-PA: (1) formulas

interpretation of a formula ϕ = set of valuations ||ϕ|| ⊆ 2P

||p|| = {s : p ∈ s}

||>|| = 2P

||⊥|| = ∅

||¬ϕ|| = . . .

||ϕ ∨ ψ|| = . . .

||〈π〉ϕ|| =
{
s : there is s′ such that s

π
−→ s′ & s′ ∈ ||ϕ||

}
||[π]ϕ|| =

{
s : for every s′ : s

π
−→ s′ =⇒ s′ ∈ ||ϕ||

}

write (s, s′) ∈ ||π|| instead of s
π
−→ s′

19 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Semantics of DL-PA: (1) formulas

interpretation of a formula ϕ = set of valuations ||ϕ|| ⊆ 2P

||p|| = {s : p ∈ s}

||>|| = 2P

||⊥|| = ∅

||¬ϕ|| = . . .

||ϕ ∨ ψ|| = . . .

||〈π〉ϕ|| =
{
s : there is s′ such that s

π
−→ s′ & s′ ∈ ||ϕ||

}
||[π]ϕ|| =

{
s : for every s′ : s

π
−→ s′ =⇒ s′ ∈ ||ϕ||

}

write (s, s′) ∈ ||π|| instead of s
π
−→ s′

19 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Semantics of DL-PA: (2) programs

interpretation of a program π = relation on the set of
valuations 2P

||p←>|| =
{
(s, s′) : s′ = s ∪ {p}

}
||p←⊥|| =

{
(s, s′) : s′ = s \ {p}

}
||ϕ?|| =

{
(s, s) : s ∈ ||ϕ||

}
||π; π′|| = ||π|| ◦ ||π′||

||π ∪ π′|| = ||π|| ∪ ||π′||

||π∗|| = (||π||)∗ =
⋃

k∈N0

(||π||)k

||π−1|| = (||π||)−1

20 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

DL-PA: eliminating the dynamic operators
1 eliminate the program operators

1 eliminate the Kleene star:

〈π∗〉ϕ↔ 〈π2≤card(Pπ)
〉ϕ

2 eliminate converse operators:

(π1; π2)
−1 ≡ π−1

2 ; π−1
1 p←>−1 ≡ p?; (skip ∪ p←⊥)

. . . p←⊥−1 ≡ . . .

3 eliminate all other program operators:

〈π1 ∪ π2〉ϕ↔ 〈π1〉 ∨ 〈π2〉ϕ 〈ψ?〉ϕ↔ ψ ∧ ϕ . . .

2 eliminate atomic programs 〈p←>〉 and 〈p←⊥〉:
distribute over ∧, ∨, ¬
can be eliminated when facing atomic formulas:

〈p←>〉q ↔

> if q = p
q otherwise

〈p←⊥〉q ↔

⊥ if q = p
q otherwise

Proposition (‘regression’)
For every DL-PA formula there is an equivalent boolean formula
(that might be exponentially longer). 21 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

DL-PA: eliminating the dynamic operators

Example

〈p←⊥−1〉(p∧q)↔ 〈¬p? ; (skip ∪ p←>)〉(p∧q)

↔ 〈¬p?〉 〈(skip ∪ p←>)〉(p∧q)

↔ ¬p ∧ 〈(skip ∪ p←>)〉(p∧q)

↔ ¬p ∧
(
〈skip〉(p ∧ q) ∨ 〈p←>)〉(p∧q)

)
↔ ¬p ∧

(
〈skip〉(p ∧ q) ∨ (〈p←>)〉p ∧ 〈p←>)〉q)

)
↔ ¬p ∧

(
(p ∧ q) ∨ (> ∧ q)

)
↔ ¬p ∧

(
(p ∧ q) ∨ q

)
↔ ¬p ∧ q

22 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Properties of DL-PA

compares favourably to PDL:
PSPACE complete both for model checking and satisfiability
checking [Balbiani et al., ongoing]

in [Balbiani et al., LICS 2013] PDL: SAT is EXPTIME complete
consequence relation is compact and has interpolation

fails for PDL

rest of talk:
how to capture planning and plan task modifications

23 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Outline

1 A short history of planning and logic

2 A simple logic of actions and plans

3 Planning tasks in DL-PA

4 Updating and revising by DL-PA programs

5 Planning task modification in DL-PA

6 Conclusion

24 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Classical planning

classical planning task:

〈P, finite set of propositional variables

s0, initial state

Sg, set of goal states

A〉 finite set of STRIPS actions

interpretation of an action a ∈ A = relation on the set of states

||a || =
{
(s, s′) : s ∈ ||prea || and s′ = (s \ dela) ∪ adda

}
(deterministic: each ||a || is a function)

s is reachable from s0 via A iff . . .

planning task is solvable iff some state in Sg is reachable from
s0 via A

25 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Classical planning tasks in DL-PA

action a with add list {p1, . . . , pm} and delete list {q1, . . . , qn}:

||a || = ||prea?; p1←>; · · · ; pm←>; q1←⊥; · · · ; qn←⊥||

⇒ view every ai in A = {a1, . . . , an} as a DL-PA program

define DL-PA program iterateA = (a1 ∪ · · · ∪ an)
∗

(P, A, s0, Sg) solvable iff Fml(s0)→〈iterateA〉Fml(Sg) DL-PA valid

26 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Beyond classical planning

nondeterministic effects:

if prea
then π1 ∪ π2

conditional effects:

if prea ∧ C1

then π1

else if prea ∧ C2

then π2

(precise definition requires copies of variables)

27 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Outline

1 A short history of planning and logic

2 A simple logic of actions and plans

3 Planning tasks in DL-PA

4 Updating and revising by DL-PA programs

5 Planning task modification in DL-PA

6 Conclusion

28 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Belief change operations

B ◦ A = modification of belief base B accomodating input A

many operations ◦ in the literature; most prominent:
Winslett’s possible models approach PMA [Winslett, AAAI 1988]
Winslett’s standard semantics WSS [Winslett 1995]
Forbus’s update operation [Forbus, IJCAI 1989]
Dalal’s revision operation [Dalal, AAAI 1988]

concrete operations: different from parametrised operations à
la AGM, KM (built from background ordering or distance)
semantical

1 state = subset of P
2 interpretation of formula = set of states
3 result of update/revision = set of states

B ◦ A subset of 2P

29 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Forbus’s update operation [Forbus, IJCAI 1989]

Hamming distance between states
h({p, q}, {q, r}) = card({p, r}) = 2

update B by A = “for each B-state, find the closest A -states
w.r.t. h(., .); then collect the resulting states”

1 s �forbus A =
{
s′ : s′ ∈ ||A || and there is no s′′ s.th. h(s, s′′) < h(s, s′)

}
2 S �forbus A =

⋃
s∈S s �forbus A

Example

¬p ∧ ¬q �forbus p ∨ q = ||p⊕q|| (exclusive ∨)

p⊕q �forbus p = ||p||

30 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Dalal’s revision operation [Dalal, AAAI 1988]

revise B by A = “go to the A -states that are closest w.r.t.
Hamming distance to the B-states”

B ∗dalal A =
{
sA ∈ ||A || : there is sB ∈ ||B || s.t. there are no

s′A , s
′
B with h(s′A , s

′
B) < h(sA , sB)

}

update vs. revision:
B ∗dalal A = B �forbus A if B is complete
B ∗dalal A = ||B∧A || if ||B∧A || , ∅

Example

¬p ∧ ¬q ∗dalal p ∨ q = ||p⊕q||
p⊕q ∗dalal p = ||p ∧ ¬q||

31 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

The embeddings in a nutshell
here: polynomial embeddings into DL-PA

object language operators (vs. metalanguage operations)
regression⇒ representation of B ◦ A in propositional logic

update by atomic formula is ‘built in’:
p←> = “update by p!”
p←⊥ = “update by ¬p!”

update by complex formula A = complex assignment πA

depends on belief change operation:

πwss
¬p∨¬q = p←⊥∪ q←⊥∪ (p←⊥; q←⊥)

π
pma
¬p∨¬q = . . .

to be proved for each change operation ◦op :

B ◦op A =
∣∣∣∣∣∣〈(πop

A)−1
〉
B
∣∣∣∣∣∣

details in the next slides
32 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Some useful programs and formulas

nondeterministically assign truth values to p1, . . . , pn:

vary
(
{p1, . . . , pn}

)
= (p1←>∪ p1←⊥) ; · · · ; (pn←>∪ pn←⊥)

nondeterministically flip one of p1, . . . , pn:

flip1
(
{p1, . . . , pn}

)
= p1←¬p1 ∪ · · · ∪ pn←¬pn

Hamming distance to closest A -state at least m:

H(A ,≥m) =

> if m = 0

¬
〈
flip1≤m−1

(
PA

)〉
A if m ≥ 1

33 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Expressing Forbus’s operation in DL-PA

Theorem ([H, KR 2014])

Let πforbus(A) be the DL-PA program ⋃
0≤m≤card(PA)

H(A ,≥m)?; flip1m
(
PA

) ;A?

Then B �forbus A = ||〈(πforbus(A))−1〉B ||.

program length cubic in length of A

34 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Expressing Dalal’s operation in DL-PA

Theorem ([H, KR 2014])

Let πdalal(A ,B) be the DL-PA program

vary
(
PB

)
; B? ; ⋃

0≤m≤card(PA)

(
[vary

(
PB

)
; B?]H(A ,≥m)

)
? ; flip1m

(
PA

) ;A?

Then for satisfiable B: B ∗dalal A = ||〈(πdalal(A ,B))−1〉>||.

program length cubic in length of A + length of B

35 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Outline

1 A short history of planning and logic

2 A simple logic of actions and plans

3 Planning tasks in DL-PA

4 Updating and revising by DL-PA programs

5 Planning task modification in DL-PA

6 Conclusion

36 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Planning task modification
suppose (P, A, s0, Sg) has no solution

Sg

s0•

22

,,

reachable via A

modify task [Smith, ICAPS 2004; Göbelbecker et al., ICAPS 2010]:
1 increase or decrease the set of objects of the domain
2 augment the set of actions A
3 change the initial state s0 (‘find good excuses’)
4 change the goal description Sg (‘over-subscription planning’)

here: 2, 3 and 4
37 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Planning task modification
suppose (P, A, s0, Sg) has no solution

Sg

s0•

22

,,

reachable via A

modify task [Smith, ICAPS 2004; Göbelbecker et al., ICAPS 2010]:
1 increase or decrease the set of objects of the domain
2 augment the set of actions A
3 change the initial state s0 (‘find good excuses’)
4 change the goal description Sg (‘over-subscription planning’)

here: 2, 3 and 4
37 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Changing the initial state

candidate initial states:

S′0 = {s′0 : there is a goal state that is reachable from s′0 via A}

candidate initial states closest to s0:

s0 �
forbus Fml(S′0)

alternative: s0 �
pma Fml(S′0) [Göbelbecker et al., ICAPS 2010]

for both:
“update s0 such that Sg becomes reachable”
problem: counterfactual statement⇒ non-boolean

38 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Changing the goal

candidate goal states:

S′g = {s′g : s′g is reachable from initial state via A}

candidate goal states closest to Sg:

Sg ∗
dalal Fml(S′g)

“revise Sg such that goal becomes reachable from s0”
N.B.: update would be too permissive

problem: counterfactual statement⇒ non-boolean

39 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Augmenting the set of actions

given: planning task (P, A, s0, Sg)

set of background actions A0

only A is initially usable

s0 |=
(∧

a∈A ua

)
∧

(∧
a∈A0\A ¬ua

)
add ua to the precondition of all actions
change the ua minimally such that Sg gets reachable

40 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Changing the initial state in DL-PA

set of candidate initial states:

S′0 =
∣∣∣∣∣∣〈iterateA〉Fml(Sg)

∣∣∣∣∣∣
Theorem
The set of initial states closest to s0 from which Sg is reachable is

s0 �
forbus Fml(S′0) =

∣∣∣∣∣∣〈(πforbus(Fml(S′0))
)−1〉
Fml(s0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣〈(πforbus(〈iterateA〉Fml(Sg))
)−1〉
Fml(s0)

∣∣∣∣∣∣

41 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Changing the goal in DL-PA

set of candidate goal states:

S′g =
∣∣∣∣∣∣〈iterate−1

A 〉Fml(s0)
∣∣∣∣∣∣

Theorem
The set of goal states closest to Sg that are reachable from s0 is

Sg ∗
dalal Fml(S′g) =

∣∣∣∣∣∣〈(πdalal(Fml(S′g), Fml(Sg))
)−1〉
>
∣∣∣∣∣∣

=
∣∣∣∣∣∣〈(πdalal(〈iterateA

−1〉Fml(s0), Fml(Sg))
)−1〉
>
∣∣∣∣∣∣

42 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Outline

1 A short history of planning and logic

2 A simple logic of actions and plans

3 Planning tasks in DL-PA

4 Updating and revising by DL-PA programs

5 Planning task modification in DL-PA

6 Conclusion

43 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Conclusion

Dynamic Logic of Propositional Assignments DL-PA
[H. et al., IJCAI 2011, Balbiani, H.&Troquard, LICS 2013]

a sort of Hilbert program for knowledge representation:
capture metalinguistic definitions in a logical language

update and revision operations [H., KR 2014]
merging operations [H. et al., FOIKS 2014]
abstract argumentation frameworks and their modification

[Doutre, H.&Perrussel, KR 2014]
planning tasks and their modification [H. et al., ECAI 2014]
active integrity constraints [H.&Feuillade, JELIA 2014]
Dung argumentation frameworks

enforce a property on all/some extensions = update by a
counterfactual

planning and planning task modification
builds on embedding of update/revision operations into DL-PA
modification of initial state = update by a counterfactual
modification of goal = revision by a counterfactual

44 / 45

Introduction History of planning and logic A simple logic Planning tasks Update and Revision Task modification Conclusion

Conclusion, ctd.

ongoing: epistemic extension
action preconditions become epistemic actions

public/semi-public/private/. . .⇒ DEL s

undecidable in general (due to ∗) [Miller&Moss, 2004]
single agent decidable [Bolander et al. 2012]
star-free fragment enough to embed Scherl&Levesque’s
epistemic extension of the SitCalc

[van Ditmarsch, H.&de Lima, JLC 2012]
other decidable fragments?
grounded versions: cf. Faustine’s talk at IAF’2015

t.b.d.: strategic version
based on propositional control (cf. boolean games)

45 / 45

	A short history of planning and logic
	A simple logic of actions and plans
	Planning tasks in DL-PA
	Updating and revising by DL-PA programs
	Planning task modification in DL-PA
	Conclusion

