Progress and Challenges in Planning

Hector Geffner
ICREA \& Universitat Pompeu Fabra
Barcelona, Spain

PFIA-JFPDA Rennes, 7/2015

Joint work with many people: Blai Bonet, Hector Palacios, Nir Lipovetzky, Miquel Ramirez, Filippos Kominis, Tomas Geffner, . . .

Planning and Autonomous Behavior

Key problem in autonomous behavior is control: what to do next. Three approaches to this problem:

- Programming-based: Specify control by hand
- Learning-based: Learn control from experience
- Model-based: Specify problem by hand, derive control automatically

Approaches not disjoint; successes and limitations in each . . .
Planning is the model-based approach to autonomous behavior; model captures predictions: what actions do in the world, and what sensors tell us about the world

Wumpus World PEAS description

Performance measure
gold +1000 , death -1000
-1 per step, -10 for using the arrow
Environment
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square

Actuators Left turn, Right turn,
Forward, Grab, Release, Shoot
Sensors Breeze, Glitter, Smell

State Model for (Classical) AI Planning

- finite and discrete state space S
- a known initial state $s_{0} \in S$
- a set $S_{G} \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a deterministic state transition function $s^{\prime}=f(a, s)$ for $a \in A(s)$
- action costs $c(a, s)>0$

A solution is a sequence of applicable actions that maps s_{0} into S_{G} It is optimal if it minimizes sum of action costs (e.g., \# of steps)

The resulting controller is open-loop (no feedback)

Uncertainty but No Feedback: Conformant Planning

- finite and discrete state space S
- a set of possible initial state $S_{0} \in S$
- a set $S_{G} \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a non-deterministic transition function $F(a, s) \subseteq S$ for $a \in A(s)$
- action costs $c(a, s)$

Uncertainty but no sensing; hence controller still open-loop
A solution is an action sequence that achieves the goal in spite of the uncertainty; i.e. for any possible initial state and any possible transition

Planning with Sensing and POMDPs

- finite and discrete state space S
- a set of possible initial state $S_{0} \in S$
- a set $S_{G} \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a non-deterministic transition function $F(a, s) \subseteq S$ for $a \in A(s)$
- action costs $c(a, s)$
- a sensor model $O(a, s)$ mapping actions and states into observation tokens o

Solutions can be expressed in many forms; e.g., policies mapping belief states into actions, contingent trees, finite-state controllers, etc.

Probabilistic version known as POMDP: Partially Obs. Markov Decision Process

Models, Languages, Control, Scalability

- A planner is a solver over a class of models; it takes a model description, and computes the corresponding control
- Many dimensions and models: uncertainty, feedback, costs, . . .
- Models described in compact form by means of planning languages
- Different types of control:
\triangleright open-loop vs. closed-loop (feedback used)
\triangleright off-line vs. on-line (full policies vs. lookahead)
- All models intractable; key challenge is scalability
\triangleright how not to be defeated by problem size
\triangleright need to exploit the structure of problems

Combinatorial Explosion: Example

- Classical problem: move blocks to transform Init into Goal
- Problem becomes path finding in directed graph associated with $\mathcal{S}(P)$
- Difficulty is that graph size is exponential in number of blocks
- Problem simple for specialized Block Solver but difficult for General Solver

Dealing with the Combinatorial Explosion: Heuristics

- Heuristic values $h(s)$ estimate "cost" from s to goal; provide sense of direction
- They are derived automatically from problem representation
- Plans can be found then with heuristic search

Status AI Planning

- Classical planners work reasonably well
\triangleright Large problems solved very fast (non-optimally)
\triangleright Different types of inference: heuristics, landmarks, helpful actions
\triangleright Specialized SAT approaches work well too (Rintanen)
- Model simple but useful
\triangleright Operators not primitive; can be policies themselves
\triangleright Fast closed-loop replanning able to cope with uncertainty sometimes
- Beyond Classical Planning: incomplete information, uncertainty,
\triangleright Top-down approach: general native solvers for MDPs, POMDPs, etc.
\triangleright Bottom-up approach: transformations and use of classical planners

Next: Three Simple, Crisp Ideas that Appear to be Practical

- Classical planning is PSPACE but problems appear to be easy. Why?
\triangleright Width-based search for classical planning
\triangleright Results in Atari and General Video Games (ALE, GVG-AI) (Lipovetzky and G. ECAI-2012, Lipovetzky et al IJCAI-2015)
- How to scale up when planning with partial observability?
\triangleright Automatic transformations and use of classical planners
\triangleright Results in domains like Wumpus and Minesweeper (Bonet and G. IJCAI-2011, AAAI-2014)
- Planning with nested beliefs in presence of multiple agents
\triangleright Formulation that can be compiled into classical planning
\triangleright Language, semantics, and computation (Kominis and G. ICAPS-2015)

IW: A Stupid but Powerful Blind-Search Algorithm?

Define the novelty of a newly generated state s in the search as the size of the smallest tuple of atoms t that is true in s and false in all previously generated states s^{\prime}.
E.g., if s makes some atom true for the first time, then novelty of s is 1 , else if s makes some pair of atoms true for the first time, novelty of s is 2 , etc.

Iterative Width (IW):

- IW (i) is a breadth-first search that prunes newly generated states s with novelty $(s)>i$.
- IW (i) runs is exponential in i, not in number of variables as normal BrFS
- IW is sequence of calls $\mathbf{I W}(i)$ for $i=1,2, \ldots$ over problem P until problem solved or i exceeds number of variables in problem

How well does IW do? Planning with atomic goals

\#	Domain	1	IW (1)	IW(2)	Neither
1.	8puzzle	400	55\%	45\%	0\%
2.	Barman	232	9\%	0\%	91\%
3.	Blocks World	598	26\%	74\%	0\%
4.	Cybersecure	86	65\%	0\%	35\%
22.	Pegsol	964	92\%	8\%	0\%
23.	Pipes-NonTan	259	44\%	56\%	0\%
24.	Pipes-Tan	369	59\%	37\%	3\%
25.	PSRsmall	316	92\%	0\%	8\%
26.	Rovers	488	47\%	53\%	0\%
27.	Satellite	308	11\%	89\%	0\%
28.	Scanalyzer	624	100\%	0\%	0\%
33.	Transport	330	0\%	100\%	0\%
34.	Trucks	345	0\%	100\%	0\%
35.	Visitall	21859	100\%	0\%	0\%
36.	Woodworking	1659	100\%	0\%	0\%
37.	Zeno	219	21\%	79\%	0\%
	Total/Avgs	37921	37.0\%	51.3\%	11.7\%
	\# Instances IW	ID	BrFS	$G B F S+h_{a d d}$	
	37921	9010	8762	34849	

Top: Instances solved by IW(1) and IW(2). Bottom: Comparison with ID, BrFS, and GBFS with $h_{\text {add }}$ (Lipovetzky \& G. 2012)

Sequential IW: Using IW Sequentially to Solve Joint Goals

SIW runs IW sequentially for achieving one (more) goal at a time (hill-climbing)

		Serialized IW (SIW)					GBFS $+h_{a d d}$		
Domain	I	S	Q	T	$\mathrm{M} / \mathrm{A} w e$	S	Q	T	
8puzzle	50	50	42.34	0.64	$4 / 1.75$	50	55.94	0.07	
Blocks World	50	50	48.32	5.05	$3 / 1.22$	50	122.96	3.50	
Depots	22	21	34.55	22.32	$3 / 1.74$	11	104.55	121.24	
Driver	20	16	28.21	2.76	$3 / 1.31$	14	26.86	0.30	
Elevators	30	27	55.00	13.90	$2 / 2.00$	16	101.50	210.50	
Freecell	20	19	47.50	7.53	$2 / 1.62$	17	62.88	68.25	
Grid	5	5	36.00	22.66	$3 / 2.12$	3	195.67	320.65	
OpenStacksIPC6	30	26	29.43	108.27	$4 / 1.48$	30	32.14	23.86	
ParcPrinter	30	9	16.00	0.06	$3 / 1.28$	30	15.67	0.01	
Parking	20	17	39.50	38.84	$2 / 1.14$	2	68.00	686.72	
Pegsol	30	6	16.00	1.71	$4 / 1.09$	30	16.17	0.06	
Pipes-NonTan	50	45	26.36	3.23	$3 / 1.62$	25	113.84	68.42	
Rovers	40	27	38.47	108.59	$2 / 1.39$	20	67.63	148.34	
Sokoban	30	3	80.67	7.83	$3 / 2.58$	23	166.67	14.30	
Storage	30	25	12.62	0.06	$2 / 1.48$	16	29.56	8.52	
Tidybot	20	7	42.00	532.27	$3 / 1.81$	16	70.29	184.77	
Transport	30	21	54.53	94.61	$2 / 2.00$	17	70.82	70.05	
Visitall	20	19	199.00	0.91	$1 / 1.00$	3	2485.00	174.87	
Woodworking	30	30	21.50	6.26	$2 / 1.07$	12	42.50	81.02	
\ldots									
Summary	1150	819	44.4	55.01	$2.5 / 1.6$	789	137.0	91.05	

Why IW does so well? A Width Notion

Consider a chain $t_{0} \rightarrow t_{1} \rightarrow \ldots \rightarrow t_{n}$ where each t_{i} is a set of atoms from P

- A chain is valid if t_{0} is true in Init and all optimal plans for t_{i} can be extended into optimal plans for t_{i+1} by adding a single action
- The size of the chain is the size of largest t_{i} in the chain
- Width of P is size of smallest chain $t_{0} \rightarrow t_{1} \rightarrow \ldots \rightarrow t_{n}$ such that that the optimal plans for t_{n} are optimal plans for P.

Theorem 1: Domains like Blocks, Logistics, Gripper, . . . have all bounded and small width, independent of problem size provided that goals are single atoms

Theorem 2: IW runs in time exponential in width of P

IW is blind search. It doesn't use PDDL, can plan effectively with a simulator

IW on the Atari Video Games

	IW(1)		$\mathbf{2 B F S}$		BrFS	UCT
Game	Score	Time	Score	Time	Score	Score
ALIEN	$\mathbf{2 5 6 3 4}$	81	12252	81	784	7785
AmIDAR	$\mathbf{1 3 7 7}$	28	1090	37	5	180
ASSAULT	953	18	827	25	414	$\mathbf{1 5 1 2}$
AsTERIX	153400	24	77200	27	2136	$\mathbf{2 9 0 7 0 0}$
AsTEROIDS	$\mathbf{5 1 3 3 8}$	66	22168	65	3127	4661
ATLANTIS	159420	13	154180	71	30460	$\mathbf{1 9 3 8 5 8}$
BANK HEIST	$\mathbf{7 1 7}$	39	362	64	22	498
BATTLE ZONE	11600	86	$\mathbf{3 3 0 8 0 0}$	87	6313	70333
BEAM RIDER	9108	23	$\mathbf{9 2 9 8}$	29	694	6625
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots.
ROBOT TANK	$\mathbf{6 8}$	34	52	34	2	50
SEAQUEST	$\mathbf{1 4 2 7 2}$	25	6138	33	288	5132
SpACE INVADERS	2877	21	$\mathbf{3 9 7 4}$	34	112	2718
STAR GUNNER	1540	19	$\mathbf{4 6 6 0}$	18	1345	1207
TENNIS	$\mathbf{2 4}$	21	$\mathbf{2 4}$	36	-24	3
TIME PILOT	35000	9	36180	29	4064	$\mathbf{6 3 8 5 5}$
TUTANKHAM	172	15	204	34	64	$\mathbf{2 2 6}$
Up AND DOWN	$\mathbf{1 1 0 0 3 6}$	12	54820	14	746	74474
VENTURE	$\mathbf{1 2 0 0}$	22	980	35	0	0
VIDEO PINBALL	$\mathbf{3 8 8 7 1 2}$	43	62075	43	55567	254748
WIZARD OF WOR	$\mathbf{1 2 1 0 6 0}$	25	81500	27	3309	105500
ZAXXON	$\mathbf{2 9 2 4 0}$	34	15680	31	0	22610

\# Times Best (54 games)	$\mathbf{2 6}$	13	1	19

Avg Score collected by IW(1) vs. UCT and other when used in on-line mode (lookahead) in 54 Games. Atoms $=$ values of each of the 128 bytes in 1024-bit state (Lipovetzky et. al. 2015)

IW on the General-Video Games (GVG-AI)

Time	50 ms				300 ms					
Game	BrFS	MC	OLMC	IW(1)	BrFS	MC	OLMC	IW(1)	1-Look	RND
Camel Race	2	1	1	0	1	3	0	24	0	1
Digdug	0	0	0	0	0	0	0	0	0	0
Firestorms	12	6	2	13	14	7	6	25	10	0
Infection	20	21	19	22	21	19	22	21	19	22
Firecaster	0	0	0	0	0	0	1	0	0	0
Overload	9	6	8	20	17	3	5	23	0	0
Pacman	1	0	0	2	1	1	4	14	0	0
Seaquest	13	13	15	9	11	17	22	9	12	0
Whackamole	20	18	25	23	22	23	25	21	21	5
Eggomania	0	0	1	21	0	0	2	22	0	0
Total	77	65	71	110	87	73	87	159	62	28

Top: \# wins per game out of 25
Left: \# wins as function of time for diff algorithms (T. Geffner and G. 2015)

Something Different: Planning with Partial Feedback

How to act and scale up in the wumpus world?

Number of states $\approx 100^{2} \times 3^{100}$. Number of belief states exponential in that number

Start Simple: Conformant Planning

- call a set of possible states, a belief state
- actions then map a belief state b into a bel state $b_{a}=\left\{s^{\prime} \mid s^{\prime} \in F(a, s) \& s \in b\right\}$
- conformant problem becomes a path-finding problem in belief space

Problem: number of belief state is doubly exponential in number of variables.

- effective representation of belief states b
- effective heuristic $h(b)$ for estimating cost in belief space

Alternative: translate into classical planning (Palacios \& G, JAIR-2009)

Basic Translation K_{0} : Conformant into Classical

Given conformant problem $P=\langle F, O, I, G\rangle$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

Define classical problem $K_{0}(P)=\left\langle F^{\prime}, O^{\prime}, I^{\prime}, G^{\prime}\right\rangle$ as

- $F^{\prime}=\{K L, K \neg L \mid L \in F\}$
- $I^{\prime}=\{K L \mid$ clause $L \in I\}$
- $G^{\prime}=\{K L \mid L \in G\}$
- $O^{\prime}=O$ but preconds L replaced by $K L$, and effects $C \rightarrow L$ replaced by $K C \rightarrow K L$ (supports) and $\neg K \neg C \rightarrow \neg K \neg L$ (cancellation)
$K_{0}(P)$ is sound but incomplete: classical plans that solve $K_{0}(P)$ solve P but not vice versa. Complete translations K_{i} exponential in width parameter, yet . . .

Using Classical Planners for Planning with Sensing

- A partially observable problem $P=\langle F, O, I, G, M\rangle$ is a conformant problem $P^{\prime}=\langle F, O, I, G\rangle$ extended with a sensor model M :
$\triangleright M=$ set of sensors (C, L) : if C true, value of L observable
- Define optimistic relaxation $K(P)$ as $K_{0}(P)=\left\langle F^{\prime}, O^{\prime}, I^{\prime}, G^{\prime}\right\rangle$ extended with extra actions for invariants and sensors:
$\triangleright O_{i n v}=\{K C \rightarrow K \neg L$ for invariant clauses $C \rightarrow L$ in $I\}$
$\triangleright O_{\text {sen }}=\{K C \wedge \neg K L \wedge \neg K \neg L \rightarrow K L, K C \wedge \neg K L \wedge \neg K L \rightarrow K \neg L$ for sensors (C, L) in $M\}$
- Use $K(P)$ for on-line partially observable planner (Bonet and G., 2011, 2014)
\triangleright Action Selection: Classical plan from $K(P)$ executed until actual observations refute assumptions; then replan. Beliefs tracked in $K L$ literals
- Exploitation or exploration principle ensures that for width-1 problems with no dead-ends, process always reaches goal

Empirical Results

Minesweeper

Wumpus Problem

| | | | | average | | avg. time in seconds | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| domain | problem | \#sim | solved | calls | length | total | prep | exec |
| mines | 4×4 | 100 | 35 | 5.1 | 18.0 | 11.3 | 10.7 | 0.6 |
| mines | 6×6 | 100 | 37 | 9.6 | 38.0 | 522.4 | 506.6 | 15.8 |
| mines | 8×8 | 100 | 43 | 13.1 | 66.0 | 3488.2 | 3365.4 | 122.7 |
| wumpus | 5×5 | 100 | 100 | 12.2 | 15.2 | 1.4 | 0.9 | 0.4 |
| wumpus | 10×10 | 100 | 100 | 54.1 | 60.5 | 182.5 | 173.2 | 9.2 |
| wumpus | 15×15 | 100 | 100 | 109.7 | 121.0 | 3210.3 | 3140.3 | 70.0 |

E.g., in 15×15 Wumpus: 100% instances solved; 0.57 secs per action in execution

Last Theme: Planning with Nested Beliefs

- Belief tracking in partially observable planning is simple (semantically)
\triangleright Beliefs are sets of states (or probability distributions)
\triangleright If b is belief before action a, belief b_{a} after action is:

$$
b_{a}=\left\{s^{\prime} \mid s^{\prime} \in F(a, s) \& s \in b\right\}
$$

\triangleright If then observation o is obtained, belief b_{a}^{o} after observation is:

$$
b_{a}^{o}=\left\{s^{\prime} \mid s^{\prime} \in b_{a} \text { and } o \in O(s, a)\right\}
$$

- Agent knows p if p is true in all states s in current belief b
- Belief tracking in presence of other agents more complicated but required for communication

Example: Communication as Planning

1	$\mathbf{2}$	3	4

- Initially agents A and B at 2, and some blocks b_{i} not at 2
- Goal: A knows where b_{1} is and \mathbf{B} knows where b_{2} is
- Actions: agents can move, communicate, and sense blocks in room
- Key questions: what to sense and what to communicate; shortest plan is:
\triangleright A moves left to 1
\triangleright B moves right to 3
\triangleright A senses which blocks are in 1
\triangleright B senses which blocks are in 3
$\triangleright \mathrm{A}$ tells B whether b_{2} in 1
$\triangleright \mathrm{B}$ tells A whether b_{1} in 3
- Knowing what to communicate and when, requires modeling nested beliefs; e.g., B knows that A knows where b_{1} is after plan, else it'd go and sense 4

Beliefs in Multiagent Agent Settings

- Beliefs not only about the world but about beliefs of other agents
- E.g., $K_{1} K_{2} p \wedge K_{1} \neg K_{3} p$ says that 1 knows that 2 knows p and that 3 doesn't
- Such formulas cannot be evaluated in beliefs represented by sets of states (truth valuations)
- Futher structure required:
\triangleright Kripke structure $\mathcal{K}=\langle W, R, V\rangle$ where W is set of worlds w, R is a set of accessibility relations R^{i} on worlds, one for each agent i, and $V(w)$ is truth valuation for world w
\triangleright For objective formula $A, \mathcal{K}, w \models K_{i} A$ iff A is true in $V(w)$
\triangleright For epistemic formula $K_{i} A, \mathcal{K}, w \models K_{i} A$ iff $\mathcal{K}, w^{\prime} \models A$ for all w^{\prime} s.t. $R^{i}\left(w, w^{\prime}\right)$
- Questions:
\triangleright How to specify Kripke structures encoding initial beliefs?
\triangleright How to update them as actions are applied and observations gathered?

A Basic "STRIPS" Solution to Multiagent Beliefs

- Agents assumed to start with common initial belief about the world given by set of states S_{0}
- Agents act on the world, sense environment, and sense beliefs of other agents
- Such events are assumed to be public
- This results in unique Kripke structure $\mathcal{K}_{t}=\left\langle W_{t}, R_{t}, V_{t}\right\rangle$ for each time step t :
$\triangleright W_{t}=S_{0}$; i.e., worlds associated with the possible initial states in S_{0},
$\triangleright V_{t}\left(s_{0}\right)$ is the state that results from s_{0} after the actions done up to time t,
$\triangleright R_{t}^{i}\left(s_{0}, s_{0}^{\prime}\right)$ true unless agent i sensed A at $t^{\prime}<t$ and $\mathcal{K}_{t^{\prime}}, s_{0} \models A$ and $\mathcal{K}_{t^{\prime}}, s_{0}^{\prime} \models \neg A$
- The problem P of finding a sequence of actions, sensing, and communication acts for achieving a goal G, can be translated into a classical planning problem $K(P)$, solved by off-the-shelf planners
- Size of the translation is quadratic in $\left|S_{0}\right|$ (Kominis and G. 2015)

Challenges and Opportunities in Planning

- Technical Challenges
\triangleright Scaling up in probabilistic partially obs problems (POMDPs)
\triangleright Learning models: how to act when action and sensor not fully known
\triangleright Learning states: learning models from streams of actions and observations
\triangleright Hierarchies: what to abstract away and when, scaffolding
\triangleright Multiagent: generation and recognition of intentional behaviour
\triangleright Constraints: like geometrical constraints in motion planning
- Applications
\triangleright robotics, video-games, dialogue, interaction, . .
- Cognitive Science
\triangleright derivation of heuristics provides model for quick global appraisals
\triangleright scalability and computation as sources of insight

Summary

- Planning is model-based approach to autonomous behavior
- Planning models come in many forms: uncertainty, feedback, costs, . . .
- Key technique in classical planning is automatic derivation and use of heuristics
- Yet simple blind search algorithms like IW can perform well too and wider scope (Atari Games)
- Power of classical planners used for other tasks via transformations:
\triangleright on-line planning with partial observability
\triangleright planning with nested beliefs when other agents present - . .
- Structure: width-notions for classical planning, belief tracking, reductions, . . .

