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Planning and Autonomous Behavior

Key problem in autonomous behavior is control: what to do next. Three
approaches to this problem:

• Programming-based: Specify control by hand

• Learning-based: Learn control from experience

• Model-based: Specify problem by hand, derive control automatically

Approaches not disjoint; successes and limitations in each . . .

Planning is the model-based approach to autonomous behavior; model captures
predictions: what actions do in the world, and what sensors tell us about the world
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Wumpus World PEAS description

Performance measure
gold +1000, death -1000
-1 per step, -10 for using the arrow

Environment
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square
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Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT
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START

Gold
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Actuators Left turn, Right turn,
Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell
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State Model for (Classical) AI Planning

• finite and discrete state space S

• a known initial state s0 ∈ S

• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each s ∈ S

• a deterministic state transition function s′ = f(a, s) for a ∈ A(s)

• action costs c(a, s) > 0

A solution is a sequence of applicable actions that maps s0 into SG

It is optimal if it minimizes sum of action costs (e.g., # of steps)

The resulting controller is open-loop (no feedback)
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Uncertainty but No Feedback: Conformant Planning

• finite and discrete state space S

• a set of possible initial state S0 ∈ S

• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each s ∈ S

• a non-deterministic transition function F (a, s) ⊆ S for a ∈ A(s)

• action costs c(a, s)

Uncertainty but no sensing; hence controller still open-loop

A solution is an action sequence that achieves the goal in spite of the uncertainty;
i.e. for any possible initial state and any possible transition
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Planning with Sensing and POMDPs

• finite and discrete state space S

• a set of possible initial state S0 ∈ S

• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each s ∈ S

• a non-deterministic transition function F (a, s) ⊆ S for a ∈ A(s)

• action costs c(a, s)

• a sensor model O(a, s) mapping actions and states into observation tokens o

Solutions can be expressed in many forms; e.g., policies mapping belief states into
actions, contingent trees, finite-state controllers, etc.

Probabilistic version known as POMDP: Partially Obs. Markov Decision Process
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Models, Languages, Control, Scalability

• A planner is a solver over a class of models; it takes a model description, and
computes the corresponding control

• Many dimensions and models: uncertainty, feedback, costs, . . .

• Models described in compact form by means of planning languages

• Different types of control:

. open-loop vs. closed-loop (feedback used)

. off-line vs. on-line (full policies vs. lookahead)

• All models intractable; key challenge is scalability

. how not to be defeated by problem size

. need to exploit the structure of problems
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Combinatorial Explosion: Example
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• Classical problem: move blocks to transform Init into Goal

• Problem becomes path finding in directed graph associated with S(P )

• Difficulty is that graph size is exponential in number of blocks

• Problem simple for specialized Block Solver but difficult for General Solver
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Dealing with the Combinatorial Explosion: Heuristics
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• Heuristic values h(s) estimate “cost” from s to goal; provide sense of direction

• They are derived automatically from problem representation

• Plans can be found then with heuristic search
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Status AI Planning

• Classical planners work reasonably well

. Large problems solved very fast (non-optimally)

. Different types of inference: heuristics, landmarks, helpful actions

. Specialized SAT approaches work well too (Rintanen)

• Model simple but useful

. Operators not primitive; can be policies themselves

. Fast closed-loop replanning able to cope with uncertainty sometimes

• Beyond Classical Planning: incomplete information, uncertainty, . . .

. Top-down approach: general native solvers for MDPs, POMDPs, etc.

. Bottom-up approach: transformations and use of classical planners
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Next: Three Simple, Crisp Ideas that Appear to be Practical

• Classical planning is PSPACE but problems appear to be easy. Why?

. Width-based search for classical planning

. Results in Atari and General Video Games (ALE, GVG-AI)
(Lipovetzky and G. ECAI-2012, Lipovetzky et al IJCAI-2015)

• How to scale up when planning with partial observability?

. Automatic transformations and use of classical planners

. Results in domains like Wumpus and Minesweeper
(Bonet and G. IJCAI-2011, AAAI-2014)

• Planning with nested beliefs in presence of multiple agents

. Formulation that can be compiled into classical planning

. Language, semantics, and computation
(Kominis and G. ICAPS-2015)
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IW: A Stupid but Powerful Blind-Search Algorithm?

Define the novelty of a newly generated state s in the search as the size of the
smallest tuple of atoms t that is true in s and false in all previously generated
states s′.

E.g., if s makes some atom true for the first time, then novelty of s is 1, else if s
makes some pair of atoms true for the first time, novelty of s is 2, etc.

Iterative Width (IW):

• IW(i) is a breadth-first search that prunes newly generated states s with
novelty(s) > i.

• IW(i) runs is exponential in i, not in number of variables as normal BrFS

• IW is sequence of calls IW(i) for i = 1, 2, . . . over problem P until problem
solved or i exceeds number of variables in problem

H. Geffner, Progress and Challenges in Planning. PFIA-JFPDA, Rennes 7/2015 12



How well does IW do? Planning with atomic goals

# Domain I IW(1) IW(2) Neither

1. 8puzzle 400 55% 45% 0%
2. Barman 232 9% 0% 91%
3. Blocks World 598 26% 74% 0%
4. Cybersecure 86 65% 0% 35%
. . . . . . . . . . . . . . .
22. Pegsol 964 92% 8% 0%
23. Pipes-NonTan 259 44% 56% 0%
24. Pipes-Tan 369 59% 37% 3%
25. PSRsmall 316 92% 0% 8%
26. Rovers 488 47% 53% 0%
27. Satellite 308 11% 89% 0%
28. Scanalyzer 624 100% 0% 0%
. . . . . . . . . . . . . . .
33. Transport 330 0% 100% 0%
34. Trucks 345 0% 100% 0%
35. Visitall 21859 100% 0% 0%
36. Woodworking 1659 100% 0% 0%
37. Zeno 219 21% 79% 0%

Total/Avgs 37921 37.0% 51.3% 11.7%

# Instances IW ID BrFS GBFS + hadd

37921 34627 9010 8762 34849

Top: Instances solved by IW(1) and IW(2). Bottom: Comparison with ID, BrFS,
and GBFS with hadd (Lipovetzky & G. 2012)
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Sequential IW: Using IW Sequentially to Solve Joint Goals

SIW runs IW sequentially for achieving one (more) goal at a time (hill-climbing)

Serialized IW (SIW) GBFS + hadd

Domain I S Q T M/Awe S Q T

8puzzle 50 50 42.34 0.64 4/1.75 50 55.94 0.07
Blocks World 50 50 48.32 5.05 3/1.22 50 122.96 3.50
Depots 22 21 34.55 22.32 3/1.74 11 104.55 121.24
Driver 20 16 28.21 2.76 3/1.31 14 26.86 0.30
Elevators 30 27 55.00 13.90 2/2.00 16 101.50 210.50
Freecell 20 19 47.50 7.53 2/1.62 17 62.88 68.25
Grid 5 5 36.00 22.66 3/2.12 3 195.67 320.65
OpenStacksIPC6 30 26 29.43 108.27 4/1.48 30 32.14 23.86
ParcPrinter 30 9 16.00 0.06 3/1.28 30 15.67 0.01
Parking 20 17 39.50 38.84 2/1.14 2 68.00 686.72
Pegsol 30 6 16.00 1.71 4/1.09 30 16.17 0.06
Pipes-NonTan 50 45 26.36 3.23 3/1.62 25 113.84 68.42
Rovers 40 27 38.47 108.59 2/1.39 20 67.63 148.34
Sokoban 30 3 80.67 7.83 3/2.58 23 166.67 14.30
Storage 30 25 12.62 0.06 2/1.48 16 29.56 8.52
Tidybot 20 7 42.00 532.27 3/1.81 16 70.29 184.77
Transport 30 21 54.53 94.61 2/2.00 17 70.82 70.05
Visitall 20 19 199.00 0.91 1/1.00 3 2485.00 174.87
Woodworking 30 30 21.50 6.26 2/1.07 12 42.50 81.02
...

Summary 1150 819 44.4 55.01 2.5/1.6 789 137.0 91.05
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Why IW does so well? A Width Notion

Consider a chain t0 → t1 → . . .→ tn where each ti is a set of atoms from P

• A chain is valid if t0 is true in Init and all optimal plans for ti can be extended into optimal
plans for ti+1 by adding a single action

• The size of the chain is the size of largest ti in the chain

• Width of P is size of smallest chain t0 → t1 → . . . → tn such that that the optimal plans

for tn are optimal plans for P .

Theorem 1: Domains like Blocks, Logistics, Gripper, . . . have all bounded and
small width, independent of problem size provided that goals are single atoms

Theorem 2: IW runs in time exponential in width of P

IW is blind search. It doesn’t use PDDL, can plan effectively with a simulator
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IW on the Atari Video Games
IW(1) 2BFS BrFS UCT

Game Score Time Score Time Score Score

Alien 25634 81 12252 81 784 7785

Amidar 1377 28 1090 37 5 180

Assault 953 18 827 25 414 1512

Asterix 153400 24 77200 27 2136 290700

Asteroids 51338 66 22168 65 3127 4661

Atlantis 159420 13 154180 71 30460 193858

Bank Heist 717 39 362 64 22 498

Battle Zone 11600 86 330800 87 6313 70333

Beam Rider 9108 23 9298 29 694 6625

. . . . . . . . . . . . . . . . . . . . .

Robot Tank 68 34 52 34 2 50

Seaquest 14272 25 6138 33 288 5132

Space Invaders 2877 21 3974 34 112 2718

Star Gunner 1540 19 4660 18 1345 1207

Tennis 24 21 24 36 -24 3

Time Pilot 35000 9 36180 29 4064 63855

Tutankham 172 15 204 34 64 226

Up And Down 110036 12 54820 14 746 74474

Venture 1200 22 980 35 0 0

Video Pinball 388712 43 62075 43 55567 254748

Wizard Of Wor 121060 25 81500 27 3309 105500

Zaxxon 29240 34 15680 31 0 22610

# Times Best (54 games) 26 13 1 19

Avg Score collected by IW(1) vs. UCT and other when used in on-line mode (lookahead) in 54

Games. Atoms = values of each of the 128 bytes in 1024-bit state (Lipovetzky et. al. 2015)
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IW on the General-Video Games (GVG-AI)

Time 50ms 300ms

Game BrFS MC OLMC IW(1) BrFS MC OLMC IW(1) 1-Look RND

Camel Race 2 1 1 0 1 3 0 24 0 1

Digdug 0 0 0 0 0 0 0 0 0 0

Firestorms 12 6 2 13 14 7 6 25 10 0

Infection 20 21 19 22 21 19 22 21 19 22

Firecaster 0 0 0 0 0 0 1 0 0 0

Overload 9 6 8 20 17 3 5 23 0 0

Pacman 1 0 0 2 1 1 4 14 0 0

Seaquest 13 13 15 9 11 17 22 9 12 0

Whackamole 20 18 25 23 22 23 25 21 21 5

Eggomania 0 0 1 21 0 0 2 22 0 0

Total 77 65 71 110 87 73 87 159 62 28

Top: # wins per game out of 25

Left: # wins as function of time

for diff algorithms (T. Geffner and G. 2015)
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Something Different: Planning with Partial Feedback

How to act and scale up in the wumpus world?

P I T

P I T

Number of states ≈ 1002 × 3100. Number of belief states exponential in that number
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Start Simple: Conformant Planning

G
I

• call a set of possible states, a belief state

• actions then map a belief state b into a bel state ba = {s′ |s′ ∈ F (a, s) & s ∈ b}

• conformant problem becomes a path-finding problem in belief space

Problem: number of belief state is doubly exponential in number of variables.

– effective representation of belief states b

– effective heuristic h(b) for estimating cost in belief space

Alternative: translate into classical planning (Palacios & G, JAIR-2009)
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Basic Translation K0: Conformant into Classical

Given conformant problem P = 〈F,O, I,G〉

• F stands for the fluents in P

• O for the operators with effects C → L

• I for the initial situation (clauses over F -literals)

• G for the goal situation (set of F -literals)

Define classical problem K0(P ) = 〈F ′, O′, I ′, G′〉 as

• F ′ = {KL,K¬L | L ∈ F}
• I ′ = {KL | clause L ∈ I}
• G′ = {KL | L ∈ G}
• O′ = O but preconds L replaced by KL, and effects C → L replaced by KC → KL

(supports) and ¬K¬C → ¬K¬L (cancellation)

K0(P ) is sound but incomplete: classical plans that solve K0(P ) solve P but not
vice versa. Complete translations Ki exponential in width parameter, yet . . .
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Using Classical Planners for Planning with Sensing

• A partially observable problem P = 〈F,O, I,G,M〉 is a conformant problem
P ′ = 〈F,O, I,G〉 extended with a sensor model M :

. M = set of sensors (C,L): if C true, value of L observable

• Define optimistic relaxation K(P ) as K0(P ) = 〈F ′, O′, I ′, G′〉 extended with
extra actions for invariants and sensors:

. Oinv = {KC → K¬L for invariant clauses C → L in I}

. Osen = {KC∧¬KL∧¬K¬L→ KL , KC∧¬KL∧¬KL→ K¬L for sensors
(C,L) in M}

• Use K(P ) for on-line partially observable planner (Bonet and G., 2011, 2014)

. Action Selection: Classical plan from K(P ) executed until actual observations refute

assumptions; then replan. Beliefs tracked in KL literals

• Exploitation or exploration principle ensures that for width-1 problems with
no dead-ends, process always reaches goal
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Empirical Results
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Minesweeper Wumpus Problem

average avg. time in seconds
domain problem #sim solved calls length total prep exec

mines 4x4 100 35 5.1 18.0 11.3 10.7 0.6
mines 6x6 100 37 9.6 38.0 522.4 506.6 15.8
mines 8x8 100 43 13.1 66.0 3488.2 3365.4 122.7

wumpus 5x5 100 100 12.2 15.2 1.4 0.9 0.4
wumpus 10x10 100 100 54.1 60.5 182.5 173.2 9.2
wumpus 15x15 100 100 109.7 121.0 3210.3 3140.3 70.0

E.g., in 15x15 Wumpus: 100% instances solved; 0.57 secs per action in execution
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Last Theme: Planning with Nested Beliefs

• Belief tracking in partially observable planning is simple (semantically)

. Beliefs are sets of states (or probability distributions)

. If b is belief before action a, belief ba after action is:

ba = {s′ |s′ ∈ F (a, s) & s ∈ b}

. If then observation o is obtained, belief boa after observation is:

b
o
a = {s′ |s′ ∈ ba and o ∈ O(s, a)}

• Agent knows p if p is true in all states s in current belief b

• Belief tracking in presence of other agents more complicated but required for
communication
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Example: Communication as Planning

1 2 3 4

• Initially agents A and B at 2, and some blocks bi not at 2

• Goal: A knows where b1 is and B knows where b2 is

• Actions: agents can move, communicate, and sense blocks in room

• Key questions: what to sense and what to communicate; shortest plan is:

. A moves left to 1

. B moves right to 3

. A senses which blocks are in 1

. B senses which blocks are in 3

. A tells B whether b2 in 1

. B tells A whether b1 in 3

• Knowing what to communicate and when, requires modeling nested beliefs;
e.g., B knows that A knows where b1 is after plan, else it’d go and sense 4
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Beliefs in Multiagent Agent Settings

• Beliefs not only about the world but about beliefs of other agents

• E.g., K1K2p ∧K1¬K3p says that 1 knows that 2 knows p and that 3 doesn’t

• Such formulas cannot be evaluated in beliefs represented by sets of states (truth
valuations)

• Futher structure required:

. Kripke structureK = 〈W,R, V 〉 where W is set of worlds w, R is a set of accessibility
relations Ri on worlds, one for each agent i, and V (w) is truth valuation for world w

. For objective formula A, K, w |= KiA iff A is true in V (w)

. For epistemic formula KiA, K, w |= KiA iff K, w′ |= A for all w′ s.t. Ri(w,w′)

• Questions:

. How to specify Kripke structures encoding initial beliefs?

. How to update them as actions are applied and observations gathered?
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A Basic “STRIPS” Solution to Multiagent Beliefs

• Agents assumed to start with common initial belief about the world given by
set of states S0

• Agents act on the world, sense environment, and sense beliefs of other agents

• Such events are assumed to be public

• This results in unique Kripke structure Kt = 〈Wt, Rt, Vt〉 for each time step t:

. Wt = S0; i.e., worlds associated with the possible initial states in S0,

. Vt(s0) is the state that results from s0 after the actions done up to time t,

. Ri
t(s0, s

′
0) true unless agent i sensed A at t′ < t and Kt′, s0 |= A and Kt′, s

′
0 |= ¬A

• The problem P of finding a sequence of actions, sensing, and communication
acts for achieving a goal G, can be translated into a classical planning problem
K(P ), solved by off-the-shelf planners

• Size of the translation is quadratic in |S0| (Kominis and G. 2015)
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Challenges and Opportunities in Planning

• Technical Challenges

. Scaling up in probabilistic partially obs problems (POMDPs)

. Learning models: how to act when action and sensor not fully known

. Learning states: learning models from streams of actions and observations

. Hierarchies: what to abstract away and when, scaffolding

. Multiagent: generation and recognition of intentional behaviour

. Constraints: like geometrical constraints in motion planning

• Applications

. robotics, video-games, dialogue, interaction, . . .

• Cognitive Science

. derivation of heuristics provides model for quick global appraisals

. scalability and computation as sources of insight
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Summary

• Planning is model-based approach to autonomous behavior

• Planning models come in many forms: uncertainty, feedback, costs, . . .

• Key technique in classical planning is automatic derivation and use of heuristics

• Yet simple blind search algorithms like IW can perform well too and wider scope
(Atari Games)

• Power of classical planners used for other tasks via transformations:

. on-line planning with partial observability

. planning with nested beliefs when other agents present

. . . .

• Structure: width-notions for classical planning, belief tracking, reductions, . . .
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