Progress and Challenges in Planning

Hector Geffner ICREA & Universitat Pompeu Fabra Barcelona, Spain

PFIA-JFPDA Rennes, 7/2015

Joint work with many people: Blai Bonet, Hector Palacios, Nir Lipovetzky, Miquel Ramirez, Filippos Kominis, Tomas Geffner, . . .

Planning and Autonomous Behavior

Key problem in **autonomous behavior** is **control:** what to do next. Three approaches to this problem:

- **Programming-based:** Specify control by hand
- Learning-based: Learn control from experience
- **Model-based:** Specify problem by hand, derive control automatically

Approaches not disjoint; successes and limitations in each . . .

Planning is the **model-based approach** to autonomous behavior; **model** captures **predictions**: what actions do in the world, and what sensors tell us about the world

Wumpus World PEAS description

Performance measure

gold +1000, death -1000

-1 per step, -10 for using the arrow

Environment

Squares adjacent to wumpus are smelly Squares adjacent to pit are breezy Glitter iff gold is in the same square Shooting kills wumpus if you are facing it Shooting uses up the only arrow Grabbing picks up gold if in same square Releasing drops the gold in same square

Actuators Left turn, Right turn,

Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell

State Model for (Classical) AI Planning

- finite and discrete state space ${\boldsymbol{S}}$
- a known initial state $s_0 \in S$
- a set $S_G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a deterministic state transition function s' = f(a, s) for $a \in A(s)$
- action costs c(a, s) > 0

A solution is a sequence of applicable actions that maps s_0 into S_G It is optimal if it minimizes sum of action costs (e.g., # of steps) The resulting controller is **open-loop** (no feedback)

Uncertainty but No Feedback: Conformant Planning

- finite and discrete state space ${\cal S}$
- a set of possible initial state $S_0 \in S$
- a set $S_G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a **non-deterministic** transition function $F(a,s) \subseteq S$ for $a \in A(s)$
- action costs c(a, s)

Uncertainty but no sensing; hence controller still open-loop

A **solution** is an **action sequence** that achieves the goal in spite of the uncertainty; i.e. for **any possible initial state** and **any possible transition**

Planning with Sensing and POMDPs

- finite and discrete state space ${\boldsymbol{S}}$
- a set of possible initial state $S_0 \in S$
- a set $S_G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a **non-deterministic** transition function $F(a,s) \subseteq S$ for $a \in A(s)$
- action costs c(a, s)
- a sensor model O(a, s) mapping actions and states into observation tokens o

Solutions can be expressed in many forms; e.g., **policies** mapping belief states into actions, contingent **trees**, finite-state **controllers**, etc.

Probabilistic version known as **POMDP**: Partially Obs. Markov Decision Process

Models, Languages, Control, Scalability

- A planner is a solver over a class of models; it takes a model description, and computes the corresponding control
- Many dimensions and models: uncertainty, feedback, costs, ...
- Models described in compact form by means of **planning languages**
- Different **types** of control:
 - open-loop vs. closed-loop (feedback used)
 off-line vs. on-line (full policies vs. lookahead)
- All models intractable; key challenge is scalability
 - how not to be defeated by problem size
 - need to exploit the structure of problems

Combinatorial Explosion: Example

- Classical problem: move blocks to transform Init into Goal
- Problem becomes **path finding** in **directed graph** associated with $\mathcal{S}(P)$
- Difficulty is that graph size is **exponential** in number of blocks
- Problem simple for specialized Block Solver but difficult for General Solver

H. Geffner, Progress and Challenges in Planning. PFIA-JFPDA, Rennes 7/2015

Dealing with the Combinatorial Explosion: Heuristics

- Heuristic values h(s) estimate "cost" from s to goal; provide sense of direction
- They are **derived automatically** from problem representation
- Plans can be found then with **heuristic search**

Status AI Planning

• Classical planners work reasonably well

- Large problems solved very fast (non-optimally)
- > Different types of **inference**: heuristics, landmarks, helpful actions
- Specialized SAT approaches work well too (Rintanen)

• Model simple but useful

- > Operators not primitive; can be policies themselves
- Fast closed-loop replanning able to cope with uncertainty sometimes
- Beyond Classical Planning: incomplete information, uncertainty, ...
 - **Top-down** approach: general **native solvers** for MDPs, POMDPs, etc.
 - **Bottom-up** approach: **transformations** and use of classical planners

Next: Three Simple, Crisp Ideas that Appear to be Practical

- Classical planning is **PSPACE** but problems appear to be **easy**. Why?
 - Width-based search for classical planning
 - Results in Atari and General Video Games (ALE, GVG-AI) (Lipovetzky and G. ECAI-2012, Lipovetzky et al IJCAI-2015)
- How to scale up when planning with partial observability?
 - Automatic transformations and use of classical planners
 Results in domains like Wumpus and Minesweeper
 - (Bonet and G. IJCAI-2011, AAAI-2014)
- Planning with **nested beliefs** in presence of **multiple agents**
 - Formulation that can be compiled into classical planning
 - Language, semantics, and computation (Kominis and G. ICAPS-2015)

IW: A Stupid but Powerful Blind-Search Algorithm?

Define the **novelty** of a newly generated state s in the search as the **size of the smallest tuple of atoms** t that is **true** in s and **false** in all previously generated states s'.

E.g., if s makes some **atom** true for the first time, then novelty of s is 1, else if s makes some **pair of atoms** true for the first time, novelty of s is 2, etc.

Iterative Width (IW):

- IW(i) is a **breadth-first** search that **prunes** newly generated states s with novelty(s) > i.
- IW(i) runs is exponential in *i*, not in number of variables as normal BrFS
- IW is sequence of calls IW(i) for i = 1, 2, ... over problem P until problem solved or i exceeds number of variables in problem

How well does IW do? Planning with atomic goals

#	Domain		Ι	$\mathbf{IW}(1)$	$\mathbf{IW}(2)$	Neither
1.	8puzzle	8puzzle		55%	45%	0%
2.	Barman		232	9%	0%	91%
3.	Blocks Wor	Blocks World		26%	74%	0%
4.	Cybersecure	е	86	65%	0%	35%
						00/
22.	0	-	964	92%	8%	0%
23.		an	259	44%	56%	0%
24.	I		369	59%	37%	3%
25.	PSRsmall		316	92%	0%	8%
26.	Rovers		488	47%	53%	0%
27.	Satellite	Satellite		11%	89%	0%
28.	Scanalyzer	Scanalyzer		100%	0%	0%
33.	Transport		330	0%	100%	0%
34.	Trucks		345	0%	100%	0%
35.	Visitall		21859	100%	0%	0%
36.	Woodworki	ng	1659	100%	0%	0%
37.	Zeno		219	21%	79%	0%
	Total/Avgs		37921	37.0%	51.3%	11.7%
_	# Instances		ID	BrFS	GBFS +	h_{add}
_	37921		9010	8762	348	349

Top: Instances solved by IW(1) and IW(2). **Bottom:** Comparison with ID, BrFS, and GBFS with h_{add} (Lipovetzky & G. 2012)

Sequential IW: Using IW Sequentially to Solve Joint Goals

SIW runs **IW** sequentially for achieving **one (more) goal at a time** (hill-climbing)

		-							
		Serialized IW (SIW)					$GBFS + h_{add}$		
Domain	Ι	S	Q	Т	$M/Aw_{m{e}}$	S	Q	Т	
8puzzle	50	50	42.34	0.64	4/1.75	50	55.94	0.07	
Blocks World	50	50	48.32	5.05	3/1.22	50	122.96	3.50	
Depots	22	21	34.55	22.32	3/1.74	11	104.55	121.24	
Driver	20	16	28.21	2.76	3/1.31	14	26.86	0.30	
Elevators	30	27	55.00	13.90	2/2.00	16	101.50	210.50	
Freecell	20	19	47.50	7.53	2/1.62	17	62.88	68.25	
Grid	5	5	36.00	22.66	3/2.12	3	195.67	320.65	
OpenStacksIPC6	30	26	29.43	108.27	4/1.48	30	32.14	23.86	
ParcPrinter	30	9	16.00	0.06	3/1.28	30	15.67	0.01	
Parking	20	17	39.50	38.84	2/1.14	2	68.00	686.72	
Pegsol	30	6	16.00	1.71	4/1.09	30	16.17	0.06	
Pipes-NonTan	50	45	26.36	3.23	3/1.62	25	113.84	68.42	
Rovers	40	27	38.47	108.59	2/1.39	20	67.63	148.34	
Sokoban	30	3	80.67	7.83	3/2.58	23	166.67	14.30	
Storage	30	25	12.62	0.06	2/1.48	16	29.56	8.52	
Tidybot	20	7	42.00	532.27	3/1.81	16	70.29	184.77	
Transport	30	21	54.53	94.61	2/2.00	17	70.82	70.05	
Visitall	20	19	199.00	0.91	1/1.00	3	2485.00	174.87	
Woodworking 30		30	21.50	6.26	2/1.07	12	42.50	81.02	
Summary	1150	819	44.4	55.01	2.5/1.6	789	137.0	91.05	

Why IW does so well? A Width Notion

Consider a chain $t_0 \rightarrow t_1 \rightarrow \ldots \rightarrow t_n$ where each t_i is a set of atoms from P

- A chain is valid if t_0 is true in lnit and all optimal plans for t_i can be extended into optimal plans for t_{i+1} by adding a single action
- The size of the chain is the size of largest t_i in the chain
- Width of P is size of smallest chain t₀ → t₁ → ... → t_n such that the optimal plans for t_n are optimal plans for P.

Theorem 1: Domains like Blocks, Logistics, Gripper, . . . have all **bounded and** small width, independent of problem size provided that goals are single atoms

Theorem 2: IW runs in time exponential in width of P

IW is blind search. It doesn't use PDDL, can plan effectively with a simulator

				-	UCT
Score	Time	Score	Time	Score	Score
25634	81	12252	81	784	7785
1377	28	1090	37	5	180
953	18	827	25	414	1512
153400	24	77200	27	2136	290700
51338	66	22168	65	3127	4661
159420	13	154180	71	30460	193858
717	39	362	64	22	498
11600	86	330800	87	6313	70333
9108	23	9298	29	694	6625
68	34	52	34	2	50
14272	25	6138	33	288	5132
2877	21	3974	34	112	2718
1540	19	4660	18	1345	1207
24	21	24	36	-24	3
35000	9	36180	29	4064	63855
172	15	204	34	64	226
110036	12	54820	14	746	74474
1200	22	980	35	0	0
388712	43	62075	43	55567	254748
121060	25	81500	27	3309	105500
29240	34	15680	31	0	22610
26		12		1	19
	1377 953 153400 51338 159420 717 11600 9108 68 14272 2877 1540 24 35000 172 110036 1200 388712 121060 29240	137728953181534002451338661594201371739116008691082368341427225287721154019242135000917215110036121200223887124312106025	1377 28 1090 953 18 827 153400 24 77200 51338 66 22168 159420 13 154180 717 39 362 11600 86 330800 9108 23 9298 68 34 52 14272 25 6138 2877 21 3974 1540 19 4660 24 21 24 35000 9 36180 172 15 204 110036 12 54820 1200 22 980 388712 43 62075 121060 25 81500 29240 34 15680	1377 28 1090 37 953 18 827 25 153400 24 77200 27 51338 66 22168 65 159420 13 154180 71 717 39 362 64 11600 86 330800 87 9108 23 9298 29 68 34 52 34 14272 25 6138 33 2877 21 3974 34 1540 19 4660 18 24 21 24 36 35000 9 36180 29 172 15 204 34 110036 12 54820 14 1200 22 980 35 388712 43 62075 43 121060 25 81500 27 29240 34 15680 31	1377 28 1090 37 5 953 18 827 25 414 153400 24 77200 27 2136 51338 66 22168 65 3127 159420 13 154180 71 30460 717 39 362 64 22 11600 86 330800 87 6313 9108 23 9298 29 694 68 34 52 34 2 14272 25 6138 33 288 2877 21 3974 34 112 1540 19 4660 18 1345 24 21 24 36 -24 35000 9 36180 29 4064 172 15 204 34 64 1200 22

IW on the Atari Video Games

Avg Score collected by IW(1) vs. UCT and other when used in on-line mode (lookahead) in 54 Games. Atoms = values of each of the 128 bytes in 1024-bit state (Lipovetzky et. al. 2015)

IW on the General-Video Games (GVG-AI)

Time		ō0ms		300ms						
Game	BrFS	MC	OLMC	IW(1)	BrFS	MC	OLMC	IW(1)	1-Look	RND
Camel Race	2	1	1	0	1	3	0	24	0	1
Digdug	0	0	0	0	0	0	0	0	0	0
Firestorms	12	6	2	13	14	7	6	25	10	0
Infection	20	21	19	22	21	19	22	21	19	22
Firecaster	0	0	0	0	0	0	1	0	0	0
Overload	9	6	8	20	17	3	5	23	0	0
Pacman	1	0	0	2	1	1	4	14	0	0
Seaquest	13	13	15	9	11	17	22	9	12	0
Whackamole	20	18	25	23	22	23	25	21	21	5
Eggomania	0	0	1	21	0	0	2	22	0	0
Total	77	65	71	110	87	73	87	159	62	28

Top: # wins per game out of 25

Left: # wins as function of time for diff algorithms (T. Geffner and G. 2015)

Something Different: Planning with Partial Feedback

How to **act** and **scale up** in the wumpus world?

Number of states $\approx 100^2 \times 3^{100}$. Number of belief states exponential in that number

Start Simple: Conformant Planning

- call a set of possible states, a belief state
- actions then map a belief state b into a bel state $b_a = \{s' \mid s' \in F(a, s) \& s \in b\}$
- conformant problem becomes a path-finding problem in belief space

Problem: number of belief state is doubly exponential in number of variables.

- effective representation of belief states b
- effective heuristic h(b) for estimating cost in belief space

Alternative: translate into classical planning (Palacios & G, JAIR-2009)

Basic Translation K_0 : **Conformant into Classical**

Given conformant problem $P = \langle F, O, I, G \rangle$

- F stands for the fluents in P
- O for the operators with effects $C \to L$
- I for the initial situation (**clauses** over F-literals)
- G for the goal situation (set of F-literals)

Define classical problem $K_0(P) = \langle F', O', I', G' \rangle$ as

- $F' = \{KL, K \neg L \mid L \in F\}$
- $I' = \{KL \mid \text{ clause } L \in I\}$
- $G' = \{KL \mid L \in G\}$
- O' = O but preconds L replaced by KL, and effects $C \to L$ replaced by $KC \to KL$ (supports) and $\neg K \neg C \to \neg K \neg L$ (cancellation)

 $K_0(P)$ is **sound** but **incomplete**: classical plans that solve $K_0(P)$ solve P but not vice versa. **Complete** translations K_i exponential in width parameter, yet . . .

Using Classical Planners for Planning with Sensing

• A partially observable problem $P = \langle F, O, I, G, M \rangle$ is a conformant problem $P' = \langle F, O, I, G \rangle$ extended with a sensor model M:

 \triangleright M = set of sensors (C, L): if C true, value of L observable

- Define optimistic relaxation K(P) as $K_0(P) = \langle F', O', I', G' \rangle$ extended with extra actions for invariants and sensors:
 - *O*_{inv} = {*KC* → *K*¬*L* for invariant clauses *C* → *L* in *I*} *O*_{sen} = {*KC* ∧ ¬*KL* ∧ ¬*K*¬*L* → *KL* , *KC* ∧ ¬*KL* ∧ ¬*KL* → *K*¬*L* for sensors (*C*, *L*) in *M*}
- Use K(P) for **on-line partially observable planner** (Bonet and G., 2011, 2014)
 - ▷ Action Selection: Classical plan from K(P) executed until actual observations refute assumptions; then replan. Beliefs tracked in KL literals
- Exploitation or exploration principle ensures that for width-1 problems with no dead-ends, process always reaches goal

Empirical Results

Minesweeper

Wumpus Problem

				ave	rage	avg. time in seconds		
domain	problem	#sim	solved	calls	length	total	prep	exec
mines	4×4	100	35	5.1	18.0	11.3	10.7	0.6
mines	6×6	100	37	9.6	38.0	522.4	506.6	15.8
mines	8x8	100	43	13.1	66.0	3488.2	3365.4	122.7
wumpus	5×5	100	100	12.2	15.2	1.4	0.9	0.4
wumpus	10×10	100	100	54.1	60.5	182.5	173.2	9.2
wumpus	15×15	100	100	109.7	121.0	3210.3	3140.3	70.0

E.g., in 15×15 Wumpus: 100% instances solved; 0.57 secs per action in execution

Last Theme: Planning with Nested Beliefs

- Belief tracking in **partially observable** planning is simple (semantically)
 - Beliefs are sets of states (or probability distributions)
 - ▷ If b is belief before action a, belief b_a after action is:

$$b_a = \{s' \mid s' \in F(a, s) \& s \in b\}$$

▷ If then observation o is obtained, belief b_a^o after observation is:

$$b_a^o = \{s' \mid s' \in b_a \text{ and } o \in O(s, a)\}$$

• Agent knows p if p is true in all states s in current belief b

 Belief tracking in presence of other agents more complicated but required for communication

Example: Communication as Planning

1 2 3 4

- Initially agents A and B at 2, and some blocks b_i not at 2
- Goal: A knows where b_1 is and B knows where b_2 is
- Actions: agents can move, communicate, and sense blocks in room
- Key questions: what to sense and what to communicate; shortest plan is:
 - ▶ A moves left to 1
 - ▶ B **moves** right to 3
 - \triangleright A senses which blocks are in 1
 - ▷ B **senses** which blocks are in 3
 - \triangleright A **tells** B whether b_2 in 1
 - \triangleright B **tells** A whether b_1 in 3
- Knowing what to communicate and when, requires modeling nested beliefs;
 e.g., B knows that A knows where b₁ is after plan, else it'd go and sense 4

Beliefs in Multiagent Agent Settings

- Beliefs not only about the **world** but **about beliefs of other agents**
- E.g., $K_1K_2p \wedge K_1 \neg K_3p$ says that 1 knows that 2 knows p and that 3 doesn't
- Such formulas cannot be evaluated in beliefs represented by **sets of states** (truth valuations)
- Futher **structure** required:
 - ▷ Kripke structure $\mathcal{K} = \langle W, R, V \rangle$ where W is set of worlds w, R is a set of accessibility relations R^i on worlds, one for each agent i, and V(w) is truth valuation for world w
 - ▷ For **objective** formula A, $\mathcal{K}, w \models K_i A$ iff A is true in V(w)
 - ▷ For epistemic formula K_iA , $\mathcal{K}, w \models K_iA$ iff $\mathcal{K}, w' \models A$ for all w' s.t. $R^i(w, w')$

• Questions:

- ▶ How to **specify** Kripke structures encoding **initial beliefs**?
- ▶ How to **update** them as **actions** are applied and **observations** gathered?

A Basic "STRIPS" Solution to Multiagent Beliefs

- Agents assumed to start with common initial belief about the world given by set of states S_0
- Agents act on the world, sense environment, and sense beliefs of other agents
- Such events are assumed to be **public**
- This results in **unique** Kripke structure $\mathcal{K}_t = \langle W_t, R_t, V_t \rangle$ for each time step t:
 - \triangleright $W_t = S_0$; i.e., worlds associated with the possible initial states in S_0 ,
 - \triangleright $V_t(s_0)$ is the state that results from s_0 after the actions done up to time t,
 - $\triangleright \ R^i_t(s_0, s_0') \text{ true unless agent } i \text{ sensed } A \text{ at } t' < t \text{ and } \mathcal{K}_{t'}, s_0 \models A \text{ and } \mathcal{K}_{t'}, s_0' \models \neg A$
- The problem P of finding a sequence of actions, sensing, and communication acts for achieving a goal G, can be translated into a classical planning problem K(P), solved by off-the-shelf planners
- Size of the translation is quadratic in $|S_0|$ (Kominis and G. 2015)

Challenges and Opportunities in Planning

• Technical Challenges

- Scaling up in probabilistic partially obs problems (POMDPs)
- Learning models: how to act when action and sensor not fully known
- Learning states: learning models from streams of actions and observations
- Hierarchies: what to abstract away and when, scaffolding
- Multiagent: generation and recognition of intentional behaviour
- Constraints: like geometrical constraints in motion planning

Applications

▶ robotics, video-games, dialogue, interaction, . . .

Cognitive Science

- derivation of heuristics provides model for quick global appraisals
- scalability and computation as sources of insight

Summary

- Planning is model-based approach to autonomous behavior
- Planning models come in many forms: uncertainty, feedback, costs, . . .
- Key technique in **classical planning** is automatic derivation and use of **heuristics**
- Yet simple blind search algorithms like IW can perform well too and wider scope (Atari Games)
- Power of classical planners used for other tasks via transformations:

on-line planning with partial observability
 planning with nested beliefs when other agents present
 ...

• Structure: width-notions for classical planning, belief tracking, reductions, . . .